Normalized defining polynomial
\( x^{37} - x^{36} - 108 x^{35} + 245 x^{34} + 4913 x^{33} - 17429 x^{32} - 115073 x^{31} + 605121 x^{30} + 1258904 x^{29} - 11895493 x^{28} + 1401577 x^{27} + 136786740 x^{26} - 218698801 x^{25} - 851925353 x^{24} + 2810760540 x^{23} + 1559768964 x^{22} - 17408647490 x^{21} + 14765496491 x^{20} + 52555917850 x^{19} - 112901823056 x^{18} - 30825357400 x^{17} + 320568348295 x^{16} - 255996383256 x^{15} - 343575615312 x^{14} + 697695088122 x^{13} - 135330997139 x^{12} - 635742178755 x^{11} + 559084397332 x^{10} + 98854779029 x^{9} - 379266961937 x^{8} + 152281955055 x^{7} + 65816775545 x^{6} - 70480276872 x^{5} + 12914339542 x^{4} + 6483753572 x^{3} - 3469705332 x^{2} + 579396241 x - 30247313 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $\frac{1}{263} a^{34} + \frac{45}{263} a^{33} - \frac{100}{263} a^{32} + \frac{123}{263} a^{31} + \frac{10}{263} a^{30} + \frac{24}{263} a^{29} - \frac{102}{263} a^{28} + \frac{62}{263} a^{27} + \frac{113}{263} a^{26} - \frac{15}{263} a^{25} - \frac{76}{263} a^{24} - \frac{16}{263} a^{23} + \frac{22}{263} a^{22} - \frac{123}{263} a^{21} - \frac{3}{263} a^{20} - \frac{55}{263} a^{19} - \frac{122}{263} a^{18} - \frac{114}{263} a^{17} - \frac{99}{263} a^{16} - \frac{92}{263} a^{15} + \frac{46}{263} a^{14} + \frac{84}{263} a^{13} + \frac{50}{263} a^{12} - \frac{18}{263} a^{11} + \frac{28}{263} a^{10} - \frac{2}{263} a^{9} + \frac{90}{263} a^{8} - \frac{125}{263} a^{7} + \frac{92}{263} a^{6} - \frac{112}{263} a^{5} - \frac{111}{263} a^{4} + \frac{110}{263} a^{3} - \frac{58}{263} a^{2} - \frac{58}{263} a + \frac{114}{263}$, $\frac{1}{1759207} a^{35} + \frac{2169}{1759207} a^{34} + \frac{200943}{1759207} a^{33} + \frac{745043}{1759207} a^{32} - \frac{60124}{1759207} a^{31} - \frac{561807}{1759207} a^{30} - \frac{572962}{1759207} a^{29} + \frac{59827}{1759207} a^{28} + \frac{544711}{1759207} a^{27} - \frac{256021}{1759207} a^{26} + \frac{517471}{1759207} a^{25} - \frac{22050}{1759207} a^{24} + \frac{635110}{1759207} a^{23} - \frac{177734}{1759207} a^{22} - \frac{511631}{1759207} a^{21} + \frac{383865}{1759207} a^{20} + \frac{523463}{1759207} a^{19} - \frac{67778}{1759207} a^{18} + \frac{715085}{1759207} a^{17} - \frac{160924}{1759207} a^{16} + \frac{470554}{1759207} a^{15} - \frac{64220}{1759207} a^{14} - \frac{194731}{1759207} a^{13} + \frac{536713}{1759207} a^{12} + \frac{510151}{1759207} a^{11} + \frac{338513}{1759207} a^{10} + \frac{75531}{1759207} a^{9} + \frac{335948}{1759207} a^{8} - \frac{541032}{1759207} a^{7} + \frac{216336}{1759207} a^{6} + \frac{767713}{1759207} a^{5} - \frac{575187}{1759207} a^{4} - \frac{472573}{1759207} a^{3} - \frac{445951}{1759207} a^{2} - \frac{355570}{1759207} a - \frac{36907}{1759207}$, $\frac{1}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{36} - \frac{29833082494730708222744942083408371251345871203839213791845043162723521620357179639781537622653240075}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{35} + \frac{273029885338845929496541278749521488026340664613417337177215918230308221205568006386252156996634976197118}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{34} + \frac{71054967432456009669811560237059225672853108363363080531881915732482377886477987691233949776422831538586787}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{33} - \frac{94591250509320160352281651048108051160764713373548757302101950894832103869238602238441571237883370311313519}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{32} + \frac{6671043454854965461697434102149714667997502634927528367305802981057065741347430224983323987531102028616568}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{31} + \frac{96511541172348129442538480528932740831048197206581003467098763054473942374062997457703485901731510063175887}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{30} + \frac{31906795471129740497422631767063729852899695233971237444850453174467761102214719971623889911667219391320089}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{29} - \frac{1899628582993499564131875275112518248490296580014509193216031086837136416307275592379256154819403202624741}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{28} + \frac{23987140330323451013293182644415254457518306263375001454551556123520540544043809188940268558264983515460505}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{27} + \frac{28026905688385834139303218053173743799439070770450426941307389978146423738024561336740859807933533038535787}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{26} + \frac{103477895500718359998171074789709713548959673387579552288173422762148103067560372909265806609779986820322319}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{25} + \frac{14156321327292003310604891475429934155995214548360086467320857229136879381753086745224222505746764525697290}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{24} + \frac{104739925069587464270959127326703390672278607345843117093918176901515069260628074161885220616505917442568345}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{23} - \frac{67078267917524242542179841375376297624854567311353856392604022421574633571950233187423621210739209629662435}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{22} + \frac{81335023540693953343871931929246197112050348848185135727580592319735350937524114825266598920834972594054522}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{21} - \frac{30263597044054591139924060592384723341639050540041050274119023630492428496010459463062927345660687620679867}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{20} + \frac{89295341043423224433157733207839295269008706836062991419401897672691776448247814987437616674925171581760024}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{19} + \frac{56531872577834651168482251738980483561732491553696241310291865472271052686327648664818221862769958989568247}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{18} + \frac{20833686475213896250359652323370422098708887780518052792062240761915459291770757313452379988149487186038367}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{17} + \frac{14011913878210449449075267809927447549536965249830626613242378810538261421811646565136098913721425776976826}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{16} + \frac{87800659164036907918644344130030406106863263311059020098195587191237537516945973513256288391718932547110546}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{15} + \frac{30832271090942909566058473243317432391446773232082736781273575189842791115035156984261488631949489650515553}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{14} - \frac{107411081783795360273460237772386352961191594897861646358740807503283218905171736139678074639509528774416895}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{13} + \frac{60601557963161595962346649447760352842264819987990387824090036669014108242243361301033599899169813354170658}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{12} + \frac{29622339208121130819037793074861902256561520214666283819193269261977498491593584075060715528594019622516873}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{11} - \frac{100465719766846687794814591315567265049831573312363012559034951824855112345535822732345888651848668242891368}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{10} + \frac{54540402452727616499502948777780228412905031472614199079775075513573387138015051584903075437520101060481302}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{9} + \frac{14725879211894453866144280750842059433472753472031012978693669896118523521051296765059054560116329741393242}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{8} + \frac{63813357185986793505570048218650670735179067744745710566313812104741048646252592180696038064759725811459264}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{7} + \frac{70664837686975546073484048776602932690145405224146879040233556152380620574359318069726328876352526976321309}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{6} + \frac{106339673587495917465259618419370302748650527708218352014770747747491419688781887066231772465614652472922560}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{5} - \frac{73414677482286749643841510696713650844181899045085732810290594796676056511371263111787814936567300078218230}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{4} - \frac{54987619681677642801021162503545429067233652280811338208683123413737887310062435304748814101829414333845597}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{3} - \frac{36418894478797653395268225325221675131648415295394174312622886049279213213519589653915259939077147358495220}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a^{2} - \frac{67075407826719266625640005914271324316862789497821734239944030208489966981682479887556519889487772584006708}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249} a - \frac{28495415372288937930368371370142311850471360031879890649397478781726175986656265883000043282372204818576601}{216744860473247717200728966213046476132270967233619462527804749365710779178051356311178084523203340091486249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $36$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 2669696754256726600000000000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 37 |
The 37 conjugacy class representatives for $C_{37}$ |
Character table for $C_{37}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
223 | Data not computed |