Normalized defining polynomial
\( x^{37} - x^{36} - 72 x^{35} + 67 x^{34} + 2278 x^{33} - 1964 x^{32} - 41849 x^{31} + 33262 x^{30} + 497142 x^{29} - 362207 x^{28} - 4027127 x^{27} + 2672215 x^{26} + 22871279 x^{25} - 13719683 x^{24} - 92273266 x^{23} + 49606380 x^{22} + 265291071 x^{21} - 126402144 x^{20} - 540999671 x^{19} + 224635365 x^{18} + 773506030 x^{17} - 271832880 x^{16} - 761221384 x^{15} + 214848879 x^{14} + 502240682 x^{13} - 103923082 x^{12} - 213804070 x^{11} + 27920639 x^{10} + 55105551 x^{9} - 3603129 x^{8} - 7708785 x^{7} + 235974 x^{6} + 497852 x^{5} - 22640 x^{4} - 12819 x^{3} + 1020 x^{2} + 28 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $\frac{1}{94763} a^{34} + \frac{3403}{94763} a^{33} - \frac{35915}{94763} a^{32} + \frac{17439}{94763} a^{31} - \frac{30790}{94763} a^{30} - \frac{15730}{94763} a^{29} + \frac{23767}{94763} a^{28} + \frac{44513}{94763} a^{27} - \frac{46739}{94763} a^{26} + \frac{7429}{94763} a^{25} + \frac{42361}{94763} a^{24} + \frac{169}{491} a^{23} + \frac{24337}{94763} a^{22} - \frac{13157}{94763} a^{21} + \frac{16460}{94763} a^{20} - \frac{37771}{94763} a^{19} - \frac{2599}{94763} a^{18} + \frac{29942}{94763} a^{17} - \frac{17754}{94763} a^{16} - \frac{3614}{94763} a^{15} - \frac{28376}{94763} a^{14} - \frac{5201}{94763} a^{13} - \frac{2229}{94763} a^{12} + \frac{38934}{94763} a^{11} - \frac{25674}{94763} a^{10} - \frac{25185}{94763} a^{9} + \frac{3362}{94763} a^{8} - \frac{20310}{94763} a^{7} + \frac{27337}{94763} a^{6} + \frac{10720}{94763} a^{5} + \frac{45180}{94763} a^{4} - \frac{32539}{94763} a^{3} + \frac{19708}{94763} a^{2} - \frac{27486}{94763} a + \frac{4000}{94763}$, $\frac{1}{94763} a^{35} + \frac{39525}{94763} a^{33} - \frac{8086}{94763} a^{32} + \frac{40694}{94763} a^{31} - \frac{45238}{94763} a^{30} + \frac{11862}{94763} a^{29} - \frac{1749}{94763} a^{28} + \frac{1559}{94763} a^{27} - \frac{46831}{94763} a^{26} - \frac{31568}{94763} a^{25} + \frac{12657}{94763} a^{24} - \frac{3841}{94763} a^{23} - \frac{9106}{94763} a^{22} - \frac{33168}{94763} a^{21} - \frac{46218}{94763} a^{20} + \frac{33486}{94763} a^{19} - \frac{33383}{94763} a^{18} - \frac{40155}{94763} a^{17} - \frac{45546}{94763} a^{16} + \frac{45639}{94763} a^{15} - \frac{5170}{94763} a^{14} - \frac{23907}{94763} a^{13} + \frac{43181}{94763} a^{12} - \frac{39402}{94763} a^{11} - \frac{28049}{94763} a^{10} + \frac{42165}{94763} a^{9} + \frac{5127}{94763} a^{8} - \frac{34723}{94763} a^{7} + \frac{40175}{94763} a^{6} - \frac{45988}{94763} a^{5} + \frac{20270}{94763} a^{4} - \frac{28022}{94763} a^{3} - \frac{1606}{94763} a^{2} + \frac{7777}{94763} a + \frac{33872}{94763}$, $\frac{1}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{36} - \frac{595037869703802503909083166917321630929675754811856509180232363432022144640964611485292}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{35} - \frac{273244333771102060152261827662237473200129304841526420532041958112097915848818480645118}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{34} + \frac{50438541151483921140107477972166894089059157581586968666647851885836674138713656459900401850}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{33} - \frac{10343282928232326081605415895787308945593066549692738311515531778921582122479812768682695972}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{32} - \frac{27867425467145712227082857497026714084444364437192860031356308466046269991025090490229740099}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{31} - \frac{67220422999077937614061868520978202668370313516858127577624722188789181362014290002860860666}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{30} - \frac{24133258144847337760648130825712087985732727607971418457222160622801786054221398206665395920}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{29} + \frac{32734160719262877362153681655571634001228421880554283932277632631496695917281071634638126901}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{28} - \frac{68303145258082708283949865312592963170794925617481938356742686007795505802086359607479127624}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{27} + \frac{17729618267654475784061046496868122387373204136459028466394215446207367915094184489543117896}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{26} + \frac{23132706987617346016839018528943810253557998284453289228519305367326886652545730825727003815}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{25} - \frac{12136244208220765295353262672772795499706627057446527354985467762510507438752006374749292626}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{24} + \frac{32269976974797485938857134679009204268019574471795967814383619473887327259822232869499086110}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{23} + \frac{50369043092369423309071474137983880592553740664748983760098758308101855754563616688972602787}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{22} - \frac{74254934019370949497659485999065026252054777630585081200424318221392844772189813615089392312}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{21} - \frac{2497627595424291177555710863887118955841248702794865446833632614018867731321149770016086566}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{20} - \frac{20384569464172606181153598311739920149969910156511512310569626121715531139226675971464456080}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{19} - \frac{9156087147768696118679615584627421684594227555769181672208045614999054727244425525475545219}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{18} - \frac{41867662355196305895813889669113261538264774991699008797432209239465215214192744180520230286}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{17} - \frac{47972869891501263266089682367311576225262149579620579017686815095390409210158859005188644553}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{16} + \frac{38154139349793943531252762602913735037941477274338481717293486423119457608705356703391009198}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{15} + \frac{58609837009586179052268453595125136790115386463687067481296106316563148965144576411082964914}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{14} + \frac{24475981291059232839261529915329468518820358902305340503035322269233031157486504119609707516}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{13} - \frac{58496874114877758965067907009379905224713333919836235970203560688063331959678586172646476150}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{12} - \frac{29365725474664805683153957051792697714295562341149249762273536468365898913189486118389626842}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{11} - \frac{50111516218787650509899514970034380939207907998144638758300400354188839492218848679783097749}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{10} - \frac{31145890406876103073713108327901928407304887737534904769198372836856017604413564870802855501}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{9} + \frac{58389121242056520339642557001642343204938748520444107946154700022763320261740304981868840119}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{8} - \frac{64794451124594564779394921489260129312226160520620589581859252331200126861738745963767107582}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{7} - \frac{36608408628855876227816960528263363777325374035829681560494572528250874783999944558769854858}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{6} + \frac{28613551633336581918298020457490718522942350392180699532103848750026424602498118394970784978}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{5} - \frac{40932148902876501924605841207059938141736533603772677894301179330822764130331361403446751670}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{4} + \frac{73405781875102555400906721048788846408417893137973597446468532940665770106757275645061485692}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{3} + \frac{27852771979113811716904466332527348183528706111333012878933776940391669499974147877130426408}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a^{2} - \frac{12940548230582574691866149961193062651971832065968713449511574256154398939511692857122416042}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927} a + \frac{51351502205591418643964523511064508742584427514324775092821509686469797338026750049861722387}{151825131072484496340769137982488217780564502277603765267000993645782154241330373914336442927}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $36$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2217351755002491400000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 37 |
| The 37 conjugacy class representatives for $C_{37}$ |
| Character table for $C_{37}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ | $37$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 149 | Data not computed | ||||||