Normalized defining polynomial
\( x^{37} - 3x - 1 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[3, 17]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-47904515513598519605877583968352253192213338987635596629423215173025831851\) \(\medspace = -\,11\cdot 103\cdot 13781\cdot 868727\cdot 1508693\cdot 35096465749296997\cdot 66\!\cdots\!61\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(98.03\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $11^{1/2}103^{1/2}13781^{1/2}868727^{1/2}1508693^{1/2}35096465749296997^{1/2}66698832184480824114267204189107205461^{1/2}\approx 6.921308800624237e+36$ | ||
Ramified primes: | \(11\), \(103\), \(13781\), \(868727\), \(1508693\), \(35096465749296997\), \(66698\!\cdots\!05461\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{-47904\!\cdots\!31851}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $19$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{3}\cdot(2\pi)^{17}\cdot R \cdot h}{2\cdot\sqrt{47904515513598519605877583968352253192213338987635596629423215173025831851}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19{,}\,18$ | $18^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $19{,}\,17{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $22{,}\,{\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | $18{,}\,{\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $15{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $36{,}\,{\href{/padicField/23.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $29{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | $18^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $37$ | $19{,}\,17{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $27{,}\,{\href{/padicField/47.10.0.1}{10} }$ | $35{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $31{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(11\) | $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
11.2.1.1 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.3.0.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
11.7.0.1 | $x^{7} + 4 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
11.7.0.1 | $x^{7} + 4 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
11.17.0.1 | $x^{17} + 4 x + 9$ | $1$ | $17$ | $0$ | $C_{17}$ | $[\ ]^{17}$ | |
\(103\) | 103.2.0.1 | $x^{2} + 102 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
103.2.1.2 | $x^{2} + 103$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
103.4.0.1 | $x^{4} + 2 x^{2} + 88 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
103.8.0.1 | $x^{8} + x^{4} + 70 x^{3} + 71 x^{2} + 49 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
103.21.0.1 | $x^{21} - x + 68$ | $1$ | $21$ | $0$ | $C_{21}$ | $[\ ]^{21}$ | |
\(13781\) | $\Q_{13781}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | ||
\(868727\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $26$ | $1$ | $26$ | $0$ | $C_{26}$ | $[\ ]^{26}$ | ||
\(1508693\) | $\Q_{1508693}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $27$ | $1$ | $27$ | $0$ | $C_{27}$ | $[\ ]^{27}$ | ||
\(35096465749296997\) | $\Q_{35096465749296997}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
Deg $18$ | $1$ | $18$ | $0$ | $C_{18}$ | $[\ ]^{18}$ | ||
\(666\!\cdots\!461\) | $\Q_{66\!\cdots\!61}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $22$ | $1$ | $22$ | $0$ | 22T1 | $[\ ]^{22}$ |