Normalized defining polynomial
\( x^{37} + 5x - 3 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 18]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(860\!\cdots\!173\) \(\medspace = 3^{34}\cdot 7\cdot 17\cdot 439\cdot 4064647\cdot 22665391718591\cdot 10\!\cdots\!81\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(153.96\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | not computed | ||
Ramified primes: | \(3\), \(7\), \(17\), \(439\), \(4064647\), \(22665391718591\), \(10715\!\cdots\!30381\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{51572\!\cdots\!42517}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{3}a^{36}-\frac{1}{3}a^{35}+\frac{1}{3}a^{34}-\frac{1}{3}a^{33}+\frac{1}{3}a^{32}-\frac{1}{3}a^{31}+\frac{1}{3}a^{30}-\frac{1}{3}a^{29}+\frac{1}{3}a^{28}-\frac{1}{3}a^{27}+\frac{1}{3}a^{26}-\frac{1}{3}a^{25}+\frac{1}{3}a^{24}-\frac{1}{3}a^{23}+\frac{1}{3}a^{22}-\frac{1}{3}a^{21}+\frac{1}{3}a^{20}-\frac{1}{3}a^{19}+\frac{1}{3}a^{18}-\frac{1}{3}a^{17}+\frac{1}{3}a^{16}-\frac{1}{3}a^{15}+\frac{1}{3}a^{14}-\frac{1}{3}a^{13}+\frac{1}{3}a^{12}-\frac{1}{3}a^{11}+\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{8}-\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
not computed
Unit group
Rank: | $18$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot R \cdot h}{2\cdot\sqrt{860077858489770512302313796852505855461124126509219255172960664620505368582114173}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19{,}\,18$ | R | $36{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | $36{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.13.0.1}{13} }{,}\,{\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | R | $19{,}\,{\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | $17{,}\,{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | $37$ | $36{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.9.0.1}{9} }^{2}{,}\,{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | $19{,}\,{\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | $21{,}\,16$ | $23{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
3.8.7.2 | $x^{8} + 6$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
3.9.9.11 | $x^{9} + 3 x + 3$ | $9$ | $1$ | $9$ | $(C_3^2:C_8):C_2$ | $[9/8, 9/8]_{8}^{2}$ | |
Deg $18$ | $9$ | $2$ | $18$ | ||||
\(7\) | 7.2.1.2 | $x^{2} + 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
Deg $29$ | $1$ | $29$ | $0$ | $C_{29}$ | $[\ ]^{29}$ | ||
\(17\) | $\Q_{17}$ | $x + 14$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
17.2.1.1 | $x^{2} + 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
17.6.0.1 | $x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
Deg $28$ | $1$ | $28$ | $0$ | $C_{28}$ | $[\ ]^{28}$ | ||
\(439\) | $\Q_{439}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
\(4064647\) | $\Q_{4064647}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
Deg $15$ | $1$ | $15$ | $0$ | $C_{15}$ | $[\ ]^{15}$ | ||
\(22665391718591\) | $\Q_{22665391718591}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $34$ | $1$ | $34$ | $0$ | $C_{34}$ | $[\ ]^{34}$ | ||
\(107\!\cdots\!381\) | $\Q_{10\!\cdots\!81}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{10\!\cdots\!81}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $[\ ]^{30}$ |