Normalized defining polynomial
\( x^{37} + 5 x - 3 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 18]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(860\!\cdots\!173\)\(\medspace = 3^{34}\cdot 7\cdot 17\cdot 439\cdot 4064647\cdot 22665391718591\cdot 10715626350203244838440932001241748830381\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $153.96$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 7, 17, 439, 4064647, 22665391718591, 10715626350203244838440932001241748830381$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{3} a^{36} - \frac{1}{3} a^{35} + \frac{1}{3} a^{34} - \frac{1}{3} a^{33} + \frac{1}{3} a^{32} - \frac{1}{3} a^{31} + \frac{1}{3} a^{30} - \frac{1}{3} a^{29} + \frac{1}{3} a^{28} - \frac{1}{3} a^{27} + \frac{1}{3} a^{26} - \frac{1}{3} a^{25} + \frac{1}{3} a^{24} - \frac{1}{3} a^{23} + \frac{1}{3} a^{22} - \frac{1}{3} a^{21} + \frac{1}{3} a^{20} - \frac{1}{3} a^{19} + \frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$
Class group and class number
not computed
Unit group
Rank: | $18$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$S_{37}$ (as 37T11):
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19{,}\,18$ | R | $36{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | $36{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | $19{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $17{,}\,{\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $37$ | $36{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21{,}\,{\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $19{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | $21{,}\,16$ | $23{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
7 | Data not computed | ||||||
17 | Data not computed | ||||||
439 | Data not computed | ||||||
4064647 | Data not computed | ||||||
22665391718591 | Data not computed | ||||||
10715626350203244838440932001241748830381 | Data not computed |