Normalized defining polynomial
\( x^{37} + 4x - 4 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 18]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(754586885585163055010132191507618030512271620378180425802422362832896\) \(\medspace = 2^{36}\cdot 41\cdot 11851181\cdot 1770736411\cdot 12\!\cdots\!31\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(72.70\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{36/37}41^{1/2}11851181^{1/2}1770736411^{1/2}12762330988939184848269187144911016406131^{1/2}\approx 2.056879048349089e+29$ | ||
Ramified primes: | \(2\), \(41\), \(11851181\), \(1770736411\), \(12762\!\cdots\!06131\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{10980\!\cdots\!07061}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2}a^{19}$, $\frac{1}{2}a^{20}$, $\frac{1}{2}a^{21}$, $\frac{1}{2}a^{22}$, $\frac{1}{2}a^{23}$, $\frac{1}{2}a^{24}$, $\frac{1}{2}a^{25}$, $\frac{1}{2}a^{26}$, $\frac{1}{2}a^{27}$, $\frac{1}{2}a^{28}$, $\frac{1}{2}a^{29}$, $\frac{1}{2}a^{30}$, $\frac{1}{2}a^{31}$, $\frac{1}{2}a^{32}$, $\frac{1}{2}a^{33}$, $\frac{1}{2}a^{34}$, $\frac{1}{2}a^{35}$, $\frac{1}{2}a^{36}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $18$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot R \cdot h}{2\cdot\sqrt{754586885585163055010132191507618030512271620378180425802422362832896}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $17{,}\,{\href{/padicField/3.10.0.1}{10} }{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | $28{,}\,{\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.4.0.1}{4} }$ | $22{,}\,{\href{/padicField/7.11.0.1}{11} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $36{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.3.0.1}{3} }$ | $15{,}\,{\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $34{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | $36{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $32{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.9.0.1}{9} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | R | $20{,}\,{\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $19{,}\,{\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $37$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $37$ | $37$ | $1$ | $36$ | |||
\(41\) | 41.2.1.1 | $x^{2} + 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
41.3.0.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
41.5.0.1 | $x^{5} + 40 x^{2} + 14 x + 35$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
Deg $27$ | $1$ | $27$ | $0$ | $C_{27}$ | $[\ ]^{27}$ | ||
\(11851181\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $[\ ]^{16}$ | ||
\(1770736411\) | $\Q_{1770736411}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | ||
Deg $26$ | $1$ | $26$ | $0$ | $C_{26}$ | $[\ ]^{26}$ | ||
\(127\!\cdots\!131\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ |