Normalized defining polynomial
\( x^{37} + 3x - 3 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 18]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(65286945888466875068341156028913675421165055931201007549536153874418572077\) \(\medspace = 3^{36}\cdot 211\cdot 6139531\cdot 8271665508919\cdot 6321124050660239\cdot 6421792279973985077\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(98.85\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{36/37}211^{1/2}6139531^{1/2}8271665508919^{1/2}6321124050660239^{1/2}6421792279973985077^{1/2}\approx 6.073746714558556e+28$ | ||
Ramified primes: | \(3\), \(211\), \(6139531\), \(8271665508919\), \(6321124050660239\), \(6421792279973985077\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{43497\!\cdots\!92637}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{5}a^{36}+\frac{2}{5}a^{35}-\frac{1}{5}a^{34}-\frac{2}{5}a^{33}+\frac{1}{5}a^{32}+\frac{2}{5}a^{31}-\frac{1}{5}a^{30}-\frac{2}{5}a^{29}+\frac{1}{5}a^{28}+\frac{2}{5}a^{27}-\frac{1}{5}a^{26}-\frac{2}{5}a^{25}+\frac{1}{5}a^{24}+\frac{2}{5}a^{23}-\frac{1}{5}a^{22}-\frac{2}{5}a^{21}+\frac{1}{5}a^{20}+\frac{2}{5}a^{19}-\frac{1}{5}a^{18}-\frac{2}{5}a^{17}+\frac{1}{5}a^{16}+\frac{2}{5}a^{15}-\frac{1}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}-\frac{1}{5}a^{10}-\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{2}{5}a^{7}-\frac{1}{5}a^{6}-\frac{2}{5}a^{5}+\frac{1}{5}a^{4}+\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{2}{5}a-\frac{1}{5}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $18$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot R \cdot h}{2\cdot\sqrt{65286945888466875068341156028913675421165055931201007549536153874418572077}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19{,}\,18$ | R | $26{,}\,{\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | $29{,}\,{\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/11.11.0.1}{11} }{,}\,{\href{/padicField/11.8.0.1}{8} }$ | $26{,}\,{\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $20{,}\,16{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $36{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $20{,}\,{\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{3}$ | $28{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }$ | $16{,}\,{\href{/padicField/31.10.0.1}{10} }{,}\,{\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.9.0.1}{9} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $37$ | $20{,}\,{\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | $19{,}\,16{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $19{,}\,{\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ | $26{,}\,{\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\) | Deg $37$ | $37$ | $1$ | $36$ | |||
\(211\) | $\Q_{211}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{211}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $17$ | $1$ | $17$ | $0$ | $C_{17}$ | $[\ ]^{17}$ | ||
\(6139531\) | $\Q_{6139531}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $28$ | $1$ | $28$ | $0$ | $C_{28}$ | $[\ ]^{28}$ | ||
\(8271665508919\) | $\Q_{8271665508919}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $26$ | $1$ | $26$ | $0$ | $C_{26}$ | $[\ ]^{26}$ | ||
\(6321124050660239\) | $\Q_{6321124050660239}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $[\ ]^{30}$ | ||
\(6421792279973985077\) | $\Q_{6421792279973985077}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $[\ ]^{30}$ |