Normalized defining polynomial
\( x^{37} - x - 5 \)
Invariants
Degree: | $37$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[1, 18]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(153\!\cdots\!989\) \(\medspace = 11\cdot 107\cdot 359\cdot 60013\cdot 22231407377\cdot 27\!\cdots\!23\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(177.13\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $11^{1/2}107^{1/2}359^{1/2}60013^{1/2}22231407377^{1/2}272458738133730168671247113586306799544259298022362102368018823^{1/2}\approx 3.9191507893987696e+41$ | ||
Ramified primes: | \(11\), \(107\), \(359\), \(60013\), \(22231407377\), \(27245\!\cdots\!18823\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{15359\!\cdots\!61989}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
not computed
Unit group
Rank: | $18$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot R \cdot h}{2\cdot\sqrt{153597429100450003375274974368002575786734470721971103516878396556684733023705161989}}\cr\mathstrut & \text{
Galois group
A non-solvable group of order 13763753091226345046315979581580902400000000 |
The 21637 conjugacy class representatives for $S_{37}$ are not computed |
Character table for $S_{37}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $19{,}\,18$ | $29{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}{,}\,{\href{/padicField/5.1.0.1}{1} }^{5}$ | $37$ | R | $37$ | $37$ | $20{,}\,{\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.6.0.1}{6} }$ | $19{,}\,17{,}\,{\href{/padicField/23.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/29.9.0.1}{9} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | $15{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $37$ | $32{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $19{,}\,{\href{/padicField/43.11.0.1}{11} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ | $16{,}\,{\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | $18{,}\,15{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $19{,}\,{\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(11\) | $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
11.2.1.1 | $x^{2} + 22$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
11.3.0.1 | $x^{3} + 2 x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
11.7.0.1 | $x^{7} + 4 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
11.7.0.1 | $x^{7} + 4 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
11.17.0.1 | $x^{17} + 4 x + 9$ | $1$ | $17$ | $0$ | $C_{17}$ | $[\ ]^{17}$ | |
\(107\) | $\Q_{107}$ | $x + 105$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
107.2.0.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
107.2.1.2 | $x^{2} + 107$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
107.2.0.1 | $x^{2} + 103 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
107.4.0.1 | $x^{4} + 13 x^{2} + 79 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
107.7.0.1 | $x^{7} + 16 x + 105$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
107.7.0.1 | $x^{7} + 16 x + 105$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
107.12.0.1 | $x^{12} + 37 x^{7} + 48 x^{6} + 6 x^{5} + 61 x^{3} + 42 x^{2} + 57 x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
\(359\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | ||
Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | ||
Deg $14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | ||
\(60013\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $19$ | $1$ | $19$ | $0$ | $C_{19}$ | $[\ ]^{19}$ | ||
\(22231407377\) | $\Q_{22231407377}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{22231407377}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | ||
Deg $22$ | $1$ | $22$ | $0$ | 22T1 | $[\ ]^{22}$ | ||
\(272\!\cdots\!823\) | Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ | ||
Deg $24$ | $1$ | $24$ | $0$ | $C_{24}$ | $[\ ]^{24}$ |