Properties

Label 37.1.146...709.1
Degree $37$
Signature $[1, 18]$
Discriminant $1.462\times 10^{67}$
Root discriminant \(65.35\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{37}$ (as 37T11)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^37 + 2*x - 1)
 
gp: K = bnfinit(y^37 + 2*y - 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^37 + 2*x - 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^37 + 2*x - 1)
 

\( x^{37} + 2x - 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $37$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14621767283680774406142649554727584574959674913509640451717805466709\) \(\medspace = 13\cdot 79\cdot 3203\cdot 230203\cdot 34944191\cdot 52002217\cdot 4124383231\cdot 25\!\cdots\!59\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(65.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{1/2}79^{1/2}3203^{1/2}230203^{1/2}34944191^{1/2}52002217^{1/2}4124383231^{1/2}2576354638936903184957678084959^{1/2}\approx 3.823841953282166e+33$
Ramified primes:   \(13\), \(79\), \(3203\), \(230203\), \(34944191\), \(52002217\), \(4124383231\), \(25763\!\cdots\!84959\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{14621\!\cdots\!66709}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $18$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{36}+2$, $a^{24}-a^{12}+1$, $a^{8}-a^{4}+1$, $a^{36}+a^{3}-a^{2}+a+1$, $a^{36}+a^{5}-a^{4}+a^{3}-a^{2}+a+1$, $a^{36}+a^{35}-a^{30}+a^{25}-a^{20}+a^{15}-a^{10}+a^{5}+1$, $a^{36}+a^{35}+a^{33}-a^{32}+a^{31}-a^{26}+2a^{25}-2a^{24}+a^{23}-a^{22}-2a^{18}+a^{17}-2a^{16}+a^{15}-a^{14}-a^{13}-a^{10}+a^{9}-3a^{8}+a^{7}-2a^{5}+a^{4}-2a^{3}+a+1$, $a^{34}+a^{33}-a^{32}-3a^{31}-2a^{30}-a^{28}-2a^{27}-2a^{26}-a^{24}-4a^{23}-4a^{22}-2a^{21}-2a^{19}-3a^{18}-2a^{17}-a^{16}-3a^{15}-4a^{14}-3a^{13}-a^{11}-2a^{10}-2a^{9}-a^{8}-2a^{7}-3a^{6}-2a^{5}+2a^{4}-2a+2$, $2a^{36}+a^{35}+3a^{33}+2a^{32}+a^{31}-3a^{30}-4a^{29}-2a^{28}-a^{27}+a^{26}-2a^{25}-2a^{24}-a^{23}+3a^{22}+4a^{21}+3a^{20}-a^{19}-a^{18}-a^{17}+2a^{16}+a^{15}-3a^{14}-3a^{13}-4a^{12}+3a^{11}+2a^{10}+3a^{9}-a^{8}-a^{7}+2a^{6}+4a^{5}+3a^{4}-2a^{3}-5a^{2}-4a+4$, $2a^{36}+2a^{35}-a^{34}-4a^{33}-4a^{32}-2a^{31}+3a^{30}+5a^{29}+2a^{28}+a^{27}-a^{26}-5a^{25}-4a^{24}-a^{23}+2a^{22}+7a^{21}+4a^{20}-2a^{19}-a^{18}-3a^{17}-6a^{16}-a^{15}+4a^{14}+6a^{13}+4a^{12}-2a^{11}-3a^{10}-3a^{9}-6a^{8}+6a^{6}+4a^{5}+5a^{4}+a^{3}-8a^{2}-5a+3$, $3a^{36}+2a^{35}-a^{34}-2a^{33}+3a^{31}+3a^{30}-3a^{28}-4a^{27}-3a^{26}-2a^{25}-a^{24}+a^{22}-2a^{20}-2a^{19}+a^{18}+4a^{17}+3a^{16}-a^{15}-3a^{14}+4a^{12}+6a^{11}+3a^{10}-2a^{8}-2a^{7}-2a^{6}-2a^{5}+a^{3}-4a+1$, $3a^{36}+2a^{35}-7a^{34}+7a^{33}-4a^{32}-3a^{31}+7a^{30}-8a^{29}+4a^{28}+2a^{27}-7a^{26}+9a^{25}-5a^{24}-a^{23}+9a^{22}-10a^{21}+7a^{20}+2a^{19}-8a^{18}+12a^{17}-8a^{16}-a^{15}+10a^{14}-15a^{13}+9a^{12}+a^{11}-12a^{10}+15a^{9}-11a^{8}-a^{7}+13a^{6}-19a^{5}+12a^{4}+2a^{3}-15a^{2}+20a-6$, $3a^{36}+2a^{35}+2a^{34}+a^{33}-a^{32}-3a^{30}+a^{29}-3a^{28}+3a^{27}-a^{26}+4a^{25}+a^{24}+3a^{23}-a^{21}-a^{20}-4a^{19}+2a^{18}-2a^{17}+5a^{16}+5a^{14}-2a^{13}+3a^{12}-3a^{11}-a^{10}-a^{9}-3a^{8}+2a^{7}-2a^{6}+6a^{5}-2a^{4}+7a^{3}-5a^{2}+2a$, $a^{36}-2a^{35}-a^{34}+2a^{33}-2a^{32}+2a^{31}-a^{29}+2a^{27}-2a^{26}+a^{25}-a^{24}-a^{23}+a^{22}+2a^{21}-3a^{20}+3a^{19}-2a^{18}+2a^{16}-2a^{15}-a^{14}+2a^{13}-3a^{12}+2a^{11}+a^{10}-2a^{9}+a^{8}+a^{7}-3a^{6}+a^{5}+2a^{4}-5a^{3}+4a^{2}-a-1$, $5a^{36}+2a^{35}-5a^{34}-2a^{33}+4a^{32}+3a^{31}-4a^{30}-4a^{29}+4a^{28}+4a^{27}-4a^{26}-5a^{25}+3a^{24}+6a^{23}-3a^{22}-6a^{21}+a^{20}+6a^{19}+a^{18}-7a^{17}-2a^{16}+7a^{15}+3a^{14}-6a^{13}-4a^{12}+7a^{11}+5a^{10}-6a^{9}-5a^{8}+5a^{7}+8a^{6}-5a^{5}-10a^{4}+4a^{3}+10a^{2}-3a-2$, $6a^{36}+3a^{35}-6a^{33}-5a^{32}-7a^{31}-2a^{30}+a^{29}+5a^{28}+8a^{27}+5a^{26}+5a^{25}-3a^{24}-3a^{23}-8a^{22}-6a^{21}-3a^{20}-a^{19}+6a^{18}+4a^{17}+6a^{16}+a^{15}-3a^{14}-5a^{13}-9a^{12}-4a^{11}-4a^{10}+6a^{9}+6a^{8}+12a^{7}+8a^{6}+4a^{5}+a^{4}-10a^{3}-6a^{2}-13a+8$, $6a^{36}-3a^{35}-6a^{34}+4a^{33}-5a^{31}+2a^{30}+7a^{29}-2a^{28}-11a^{27}+5a^{26}+10a^{25}-a^{24}-9a^{23}+2a^{22}+6a^{21}-6a^{20}-a^{19}+7a^{18}+a^{17}-13a^{16}-a^{15}+15a^{14}+a^{13}-12a^{12}-2a^{11}+11a^{10}-a^{9}-8a^{8}+8a^{7}+3a^{6}-11a^{5}-9a^{4}+17a^{3}+8a^{2}-17a+6$, $a^{36}+4a^{35}+5a^{34}+2a^{33}+a^{32}+2a^{31}+2a^{30}+a^{29}+a^{28}+2a^{27}+a^{26}-2a^{25}-2a^{24}+2a^{23}+2a^{22}-4a^{21}-4a^{20}+a^{19}-a^{18}-5a^{17}-2a^{16}+a^{15}-6a^{14}-8a^{13}+2a^{12}+a^{11}-9a^{10}-7a^{9}+a^{8}-2a^{7}-8a^{6}-2a^{5}+a^{4}-8a^{3}-7a^{2}+2a+3$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9551296549801247000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot 9551296549801247000 \cdot 1}{2\cdot\sqrt{14621767283680774406142649554727584574959674913509640451717805466709}}\cr\approx \mathstrut & 0.581835245875516 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^37 + 2*x - 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^37 + 2*x - 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^37 + 2*x - 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^37 + 2*x - 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{37}$ (as 37T11):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 13763753091226345046315979581580902400000000
The 21637 conjugacy class representatives for $S_{37}$ are not computed
Character table for $S_{37}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36{,}\,{\href{/padicField/2.1.0.1}{1} }$ $29{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ $19{,}\,17{,}\,{\href{/padicField/5.1.0.1}{1} }$ $18{,}\,{\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ $28{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }$ R $27{,}\,{\href{/padicField/17.10.0.1}{10} }$ $21{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ $33{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ $16{,}\,{\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ $32{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ $36{,}\,{\href{/padicField/37.1.0.1}{1} }$ $27{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ $20{,}\,{\href{/padicField/47.14.0.1}{14} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ $15{,}\,{\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ $20{,}\,{\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.8.0.1$x^{8} + 8 x^{4} + 12 x^{3} + 2 x^{2} + 3 x + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
13.9.0.1$x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$$1$$9$$0$$C_9$$[\ ]^{9}$
13.16.0.1$x^{16} + 3 x^{8} + 12 x^{7} + 8 x^{6} + 2 x^{5} + 12 x^{4} + 9 x^{3} + 12 x^{2} + 6 x + 2$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(79\) Copy content Toggle raw display $\Q_{79}$$x + 76$$1$$1$$0$Trivial$[\ ]$
79.2.1.2$x^{2} + 79$$2$$1$$1$$C_2$$[\ ]_{2}$
79.3.0.1$x^{3} + 9 x + 76$$1$$3$$0$$C_3$$[\ ]^{3}$
79.3.0.1$x^{3} + 9 x + 76$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $28$$1$$28$$0$$C_{28}$$[\ ]^{28}$
\(3203\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $5$$1$$5$$0$$C_5$$[\ ]^{5}$
Deg $8$$1$$8$$0$$C_8$$[\ ]^{8}$
Deg $22$$1$$22$$0$22T1$[\ ]^{22}$
\(230203\) Copy content Toggle raw display $\Q_{230203}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$
Deg $21$$1$$21$$0$$C_{21}$$[\ ]^{21}$
\(34944191\) Copy content Toggle raw display $\Q_{34944191}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{34944191}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{34944191}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $32$$1$$32$$0$32T33$[\ ]^{32}$
\(52002217\) Copy content Toggle raw display $\Q_{52002217}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$
Deg $28$$1$$28$$0$$C_{28}$$[\ ]^{28}$
\(4124383231\) Copy content Toggle raw display $\Q_{4124383231}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $34$$1$$34$$0$$C_{34}$$[\ ]^{34}$
\(257\!\cdots\!959\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $32$$1$$32$$0$32T33$[\ ]^{32}$