Normalized defining polynomial
\( x^{37} + 2x - 4 \)
Invariants
| Degree: | $37$ |
| |
| Signature: | $[1, 18]$ |
| |
| Discriminant: |
\(12461303884336350249094912131778654446280662104983736977381814821407046034784256\)
\(\medspace = 2^{70}\cdot 13\cdot 137\cdot 195791\cdot 10489284688357\cdot 5723750340436657\cdot 504174169295944373011\)
|
| |
| Root discriminant: | \(137.31\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(13\), \(137\), \(195791\), \(10489284688357\), \(5723750340436657\), \(504174169295944373011\)
|
| |
| Discriminant root field: | $\Q(\sqrt{10555\!\cdots\!02069}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{2}a^{36}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $18$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{1}\cdot(2\pi)^{18}\cdot R \cdot h}{2\cdot\sqrt{12461303884336350249094912131778654446280662104983736977381814821407046034784256}}\cr\mathstrut & \text{
Galois group
| A non-solvable group of order 13763753091226345046315979581580902400000000 |
| The 21637 conjugacy class representatives for $S_{37}$ are not computed |
| Character table for $S_{37}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $29{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.3.0.1}{3} }$ | $19{,}\,17{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/7.13.0.1}{13} }{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.14.0.1}{14} }^{2}{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | $27{,}\,{\href{/padicField/17.10.0.1}{10} }$ | $21{,}\,{\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | $22{,}\,15$ | $27{,}\,{\href{/padicField/29.10.0.1}{10} }$ | $21{,}\,15{,}\,{\href{/padicField/31.1.0.1}{1} }$ | $36{,}\,{\href{/padicField/37.1.0.1}{1} }$ | $28{,}\,{\href{/padicField/41.9.0.1}{9} }$ | $26{,}\,{\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $19{,}\,{\href{/padicField/47.13.0.1}{13} }{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | $19{,}\,{\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.7.0.1}{7} }$ | $31{,}\,{\href{/padicField/59.5.0.1}{5} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $36$ | $36$ | $1$ | $70$ | ||||
|
\(13\)
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 13.8.1.0a1.1 | $x^{8} + 8 x^{4} + 12 x^{3} + 2 x^{2} + 3 x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
| 13.9.1.0a1.1 | $x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | |
| 13.16.1.0a1.1 | $x^{16} + 3 x^{8} + 12 x^{7} + 8 x^{6} + 2 x^{5} + 12 x^{4} + 9 x^{3} + 12 x^{2} + 6 x + 2$ | $1$ | $16$ | $0$ | $C_{16}$ | $$[\ ]^{16}$$ | |
|
\(137\)
| $\Q_{137}$ | $x + 134$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 137.1.2.1a1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 137.11.1.0a1.1 | $x^{11} + x + 134$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | |
| 137.23.1.0a1.1 | $x^{23} + 12 x + 134$ | $1$ | $23$ | $0$ | $C_{23}$ | $$[\ ]^{23}$$ | |
|
\(195791\)
| $\Q_{195791}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $27$ | $1$ | $27$ | $0$ | $C_{27}$ | $$[\ ]^{27}$$ | ||
|
\(10489284688357\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $30$ | $1$ | $30$ | $0$ | $C_{30}$ | $$[\ ]^{30}$$ | ||
|
\(5723750340436657\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $35$ | $1$ | $35$ | $0$ | $C_{35}$ | $$[\ ]^{35}$$ | ||
|
\(504\!\cdots\!011\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $35$ | $1$ | $35$ | $0$ | $C_{35}$ | $$[\ ]^{35}$$ |