Normalized defining polynomial
\( x^{37} + x - 1 \)
Invariants
| Degree: | $37$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 18]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10661522314701499938886043561748289339867563939000058733653=19\cdot 11323755688122007063\cdot 49553590598385949034316572009816214049\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 11323755688122007063, 49553590598385949034316572009816214049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 232694775426930.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{37}$ (as 37T11):
| A non-solvable group of order 13763753091226345046315979581580902400000000 |
| The 21637 conjugacy class representatives for $S_{37}$ are not computed |
| Character table for $S_{37}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $19{,}\,18$ | $17{,}\,{\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $30{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $36{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $36{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $31{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $24{,}\,{\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | $27{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $21{,}\,15{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $17{,}\,{\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $20{,}\,{\href{/LocalNumberField/43.11.0.1}{11} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | $21{,}\,{\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.13.0.1}{13} }{,}\,{\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.9.0.1 | $x^{9} + x^{2} - x + 4$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 19.11.0.1 | $x^{11} - x + 16$ | $1$ | $11$ | $0$ | $C_{11}$ | $[\ ]^{11}$ | |
| 19.15.0.1 | $x^{15} + x^{2} + 4$ | $1$ | $15$ | $0$ | $C_{15}$ | $[\ ]^{15}$ | |
| 11323755688122007063 | Data not computed | ||||||
| 49553590598385949034316572009816214049 | Data not computed | ||||||