Normalized defining polynomial
\( x^{36} - 9 x^{35} - 50 x^{34} + 617 x^{33} + 853 x^{32} - 18792 x^{31} - 857 x^{30} + 335261 x^{29} - 196141 x^{28} - 3888989 x^{27} + 3669506 x^{26} + 30780881 x^{25} - 36431516 x^{24} - 169652114 x^{23} + 234314708 x^{22} + 651588327 x^{21} - 1036003947 x^{20} - 1707996749 x^{19} + 3202795146 x^{18} + 2878146054 x^{17} - 6878941470 x^{16} - 2583494750 x^{15} + 9996118628 x^{14} - 21924592 x^{13} - 9335764683 x^{12} + 2679130010 x^{11} + 5110286208 x^{10} - 2690155249 x^{9} - 1371167792 x^{8} + 1122925954 x^{7} + 110647669 x^{6} - 212313517 x^{5} + 12391295 x^{4} + 16680904 x^{3} - 1356543 x^{2} - 505872 x + 2521 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $\frac{1}{701} a^{34} - \frac{72}{701} a^{33} + \frac{276}{701} a^{32} + \frac{341}{701} a^{31} - \frac{3}{701} a^{30} - \frac{339}{701} a^{29} + \frac{183}{701} a^{28} - \frac{176}{701} a^{27} - \frac{20}{701} a^{26} + \frac{20}{701} a^{25} - \frac{7}{701} a^{24} + \frac{332}{701} a^{23} + \frac{297}{701} a^{22} - \frac{10}{701} a^{21} - \frac{7}{701} a^{20} + \frac{195}{701} a^{19} + \frac{108}{701} a^{18} - \frac{308}{701} a^{17} - \frac{204}{701} a^{16} - \frac{54}{701} a^{15} + \frac{283}{701} a^{14} + \frac{4}{701} a^{13} + \frac{248}{701} a^{12} - \frac{334}{701} a^{11} + \frac{220}{701} a^{10} - \frac{65}{701} a^{9} + \frac{124}{701} a^{8} - \frac{294}{701} a^{7} - \frac{75}{701} a^{6} - \frac{45}{701} a^{5} + \frac{57}{701} a^{4} - \frac{151}{701} a^{3} - \frac{110}{701} a^{2} - \frac{269}{701} a - \frac{246}{701}$, $\frac{1}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{35} - \frac{97187643016837663461867010721243375863013669539777454887929807884409427569947659774008493837795513501566747290657475356}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{34} - \frac{39317486045953912922026549759773339239138071096942734978989178838342015894194340274799412184689124254287487052536893986102}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{33} + \frac{99303814093569208097473550295970791512239568999028220062375177498948820838564144141668231036289502677934094806962007215764}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{32} + \frac{100149667020893760739812621349287077104691401173100000707812247385922301063948640577862289512355988526723221301499718430726}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{31} - \frac{3965125565371390930575225417085893340507000631925374377429126917829726624552548973925024236342279721020969454635425675233}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{30} + \frac{54733776248685502263118208981274108065380171409479347102685775205709199345133119340144465729019464241787911205237519852011}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{29} + \frac{70971847151548273984389099521238320949807042478144049284657338919495394064280365636371928251946976196009829894198677416545}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{28} - \frac{60111565163370698161660844113733775271879614891931563629077061666713030421648613038230806897389039112925800349496346565556}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{27} + \frac{106726371259578324489047162949181143859979422585823372227017432893307017479434548479546372351724901505264085440858823154397}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{26} - \frac{86376037569780150129453200423054566060526175239277161672650534142774413871438031678323142459353755144592544672713769661307}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{25} + \frac{84964821101770534227143816259240819562211092411446004029570903789514543451072617785242086672283443635677171971584713821603}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{24} + \frac{17879648500347898544791889661959626351196143709816245449665851912359623506850637903248440205406095619991194706177757208236}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{23} - \frac{47563863014164433032148312605837528622349647691499734916696899644814895695730659913024979134292623627312120505558639991955}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{22} + \frac{36922655229041941481314661144778305096638794467243730169005485429565659670004139351281696851047450903310999383231211203863}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{21} - \frac{82728689878964510453723494262600332553478375639529643281550153874846712673892488875450125812071759285909152433257128841941}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{20} - \frac{91528824576940902265672288929147787186801337862299825669788926183140203287010282640795319581807773147630543519741512744168}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{19} + \frac{10775235844008369089199409260464747849693780878205336438625879470164572090005487293619710997290924896942892979919671355791}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{18} - \frac{63005031506675944715499238926939933321520073331121717454851852549517627304873758930401019766244531064237531187815486105616}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{17} - \frac{47687715523706829806422509900884513565908311750472710644511539388588714788628248229421000639881330060132178809872196153772}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{16} + \frac{3986030992159746460289204560492314698515198448431287870572175906769440754915516665099158677691984587460988767580963057059}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{15} + \frac{55678326725947672862383836531191690101578642449512194389554321275623095944969975985815690272021451752628074370566768994264}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{14} - \frac{80638551229860688767639935151323572970124766991447727775809763867472385214060757975252239651969929069766042587574590137084}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{13} + \frac{3602425743765584528703764420712085039905350221362042975161409138474454516992971518574926523030827078292907044449063788837}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{12} + \frac{34506520352170061132504385827659342378573851746912303592146745075563051170078074848113812292187138650733136471738010606603}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{11} + \frac{32353739612500891938173706989594194646191726278823122728196526307676762065807048385358555954059404291165788372673731855757}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{10} - \frac{42815382000373469953654262903989118034521516415674100261755073075498429919611707439051316801594691050379625731848103827188}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{9} + \frac{55371890742139312862505188000032349127981587676691523163658146657271239228687068575183815316003249790207905218025929058080}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{8} + \frac{105008329495666200538558536932334700527064966173486457467150621292195961908349527705065681237796682209329688633093274352624}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{7} - \frac{69973761193342549661469339881443533813899824598937918427520607694347734328433211166589042980981122981667112771075208179775}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{6} + \frac{46012935923041159391048012670136281220235143262906817527331868364733662709669003691126925553215425291443853034555523906800}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{5} + \frac{66427996590030160731342204343096576218123020334763137008718272858167029992704182856619417917027352120407163594232358922193}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{4} - \frac{28825696789029219299295447461999343283573056640503963344149861021616157922091211231134306158854173156784564299932284219260}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{3} + \frac{78417831123228730152157072439790123655767890641866071319951628627901434835714710442305311401158497575796882668769555216387}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a^{2} - \frac{11045734440005822341367478487577581834755529646428584163678897107145573389335922909013750087183721499388542898495974188533}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041} a + \frac{23619217928608726122137374686810727185366362791490389249827028292099734664920649304990018707751730301831624980617059090678}{213523638801757753454390897558702645805357795376571303886997652321427289693036815631511515428013679579518618296905422944041}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 949930772610205500000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{3}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |