Normalized defining polynomial
\( x^{36} - 60 x^{34} - 4 x^{33} + 1566 x^{32} + 192 x^{31} - 23491 x^{30} - 3897 x^{29} + 225594 x^{28} + 44322 x^{27} - 1463265 x^{26} - 315834 x^{25} + 6595406 x^{24} + 1493037 x^{23} - 20954832 x^{22} - 4829603 x^{21} + 47178711 x^{20} + 10844637 x^{19} - 75203780 x^{18} - 16934940 x^{17} + 84384807 x^{16} + 18269987 x^{15} - 65933622 x^{14} - 13456680 x^{13} + 35213992 x^{12} + 6642171 x^{11} - 12459300 x^{10} - 2131789 x^{9} + 2769012 x^{8} + 423228 x^{7} - 351580 x^{6} - 47619 x^{5} + 21066 x^{4} + 2501 x^{3} - 360 x^{2} - 24 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{35} - \frac{112343084766339435154879424149013719411692509848826997423228954668375498990002855}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{34} - \frac{130029799355701447404969041799768187242008465273676668551118767628086581451204297}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{33} + \frac{40684314360517983446400335309870269645742291179284979559811412081120959760674113}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{32} + \frac{341470941146110758430586288909670007619768470522915963326342215001321709722995258}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{31} + \frac{27913237760667798850396725193792424105980170351375881897913912822025493300043925}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{30} + \frac{65470932008252850174613795729753009901342316123358751235963213406557692595494418}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{29} - \frac{6191790610093435693690936005614911979410431019914123397783991105148322051560553}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{28} - \frac{240891568900262645912014071227613523589643212677005779585225424560583476042349082}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{27} + \frac{349851801935976103430479120733807379130866028828103909922572468646698309099625805}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{26} - \frac{277707983042902521336319937894930515007152839221510273167304395026245172712464110}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{25} + \frac{273141008587516490654746492553900138464195052151487255875729232880060767014232282}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{24} - \frac{203841038705377355297410171408256662912293971887226010732420426640635727503404390}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{23} + \frac{336107052111840827121225039079598263412113622071219291850751426622904068689777921}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{22} + \frac{211799898460722910334219635131035146577530406524608634474874005517272837355574978}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{21} + \frac{346739037885554233485587237070267462168492706921613617908133833677736316163513940}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{20} + \frac{150849128698512504007870627353740412585133774398122661717415578101068766505247440}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{19} - \frac{104256743752216848182486483741913011509877278534968763873864607111480011433271773}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{18} - \frac{788157314278894144387306562178116079530218366388879492160857317697354388655055}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{17} - \frac{265789611033066123162008637345937514913343407834754410367226494460140939285537712}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{16} - \frac{250343119874610915333814334667846970400725951738504400359757700772869116638425148}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{15} - \frac{81506866815774924125329335289333617233557155100089653714885786280495288813543183}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{14} + \frac{281700086977414700672358850385855155908796529874032755631731910851574106520767051}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{13} + \frac{310988550943431476459927165897635484501848201430408101792078496448655708796705147}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{12} + \frac{208503305099733866014758966610831865530104948495564577215457315047778623329198242}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{11} + \frac{258127854240919426391896924765537669193176587281058273807803091173249074017636242}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{10} + \frac{284438955801052567288907820091005390873605634777995261219216550839811369301230863}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{9} - \frac{305328689339842170556596694593551733820017497913484601966508094242460530936033887}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{8} + \frac{243618201357030392594318184466624449452522561959464202709799503735002525633179668}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{7} + \frac{177202740718304081258979033354195027798679162057598183817966985113910278834264669}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{6} - \frac{82368270980980140313218013529563320720179372285248569433220293415460405496657147}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{5} - \frac{30379868247053015591731978645775418697681496629203418437204900067527760701325509}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{4} + \frac{14591911670992234687590915576200628787206265070437782945192047197117262953302390}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{3} + \frac{79053756948870756994522066628350994589785903467372090937320191283610048012149081}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a^{2} + \frac{270884137223942958939188112682200917188581896404115138266826902908960896347049848}{716301498946229402047582046491260714440498460249578640570052123759949582517175469} a - \frac{41457655494271782079154726947277958479505151716065697648612064645632590007327377}{716301498946229402047582046491260714440498460249578640570052123759949582517175469}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 982275678999294500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||