Normalized defining polynomial
\( x^{36} - 9 x^{35} - 65 x^{34} + 767 x^{33} + 1348 x^{32} - 27862 x^{31} + 1248 x^{30} + 570596 x^{29} - 539471 x^{28} - 7345274 x^{27} + 11035141 x^{26} + 62715081 x^{25} - 119635996 x^{24} - 365138709 x^{23} + 822660108 x^{22} + 1467238032 x^{21} - 3815197767 x^{20} - 4065525074 x^{19} + 12253153691 x^{18} + 7632713374 x^{17} - 27502514595 x^{16} - 9230490750 x^{15} + 42972000803 x^{14} + 6151376608 x^{13} - 45930613858 x^{12} - 541428095 x^{11} + 32430382933 x^{10} - 2537946464 x^{9} - 14234297497 x^{8} + 1972347494 x^{7} + 3506699274 x^{6} - 611541017 x^{5} - 408560825 x^{4} + 74320909 x^{3} + 14619917 x^{2} - 1560887 x - 127399 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{19} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{7802} a^{30} + \frac{1017}{7802} a^{29} - \frac{75}{3901} a^{28} + \frac{387}{7802} a^{27} - \frac{1607}{7802} a^{26} + \frac{1359}{7802} a^{25} - \frac{159}{3901} a^{24} - \frac{341}{7802} a^{23} - \frac{17}{166} a^{22} + \frac{76}{3901} a^{21} - \frac{246}{3901} a^{20} - \frac{30}{3901} a^{19} - \frac{2521}{7802} a^{18} + \frac{2231}{7802} a^{17} + \frac{25}{83} a^{16} + \frac{1907}{3901} a^{15} - \frac{417}{7802} a^{14} - \frac{138}{3901} a^{13} + \frac{715}{3901} a^{12} - \frac{253}{3901} a^{11} - \frac{1154}{3901} a^{10} + \frac{3341}{7802} a^{9} - \frac{1543}{7802} a^{8} - \frac{1095}{3901} a^{7} - \frac{783}{7802} a^{6} + \frac{277}{7802} a^{5} - \frac{1484}{3901} a^{4} + \frac{22}{47} a^{3} - \frac{1271}{3901} a^{2} + \frac{401}{7802} a - \frac{171}{3901}$, $\frac{1}{7802} a^{31} - \frac{337}{3901} a^{29} + \frac{399}{3901} a^{28} - \frac{1185}{7802} a^{27} + \frac{1159}{7802} a^{26} - \frac{1467}{7802} a^{25} - \frac{359}{3901} a^{24} - \frac{1191}{7802} a^{23} + \frac{1327}{7802} a^{22} + \frac{482}{3901} a^{21} + \frac{488}{3901} a^{20} - \frac{8}{3901} a^{19} + \frac{3131}{7802} a^{18} - \frac{48}{3901} a^{17} + \frac{638}{3901} a^{16} - \frac{1661}{7802} a^{15} - \frac{698}{3901} a^{14} - \frac{2651}{7802} a^{13} - \frac{1822}{3901} a^{12} + \frac{1263}{7802} a^{11} + \frac{2175}{7802} a^{10} + \frac{1166}{3901} a^{9} - \frac{1161}{7802} a^{8} + \frac{2877}{7802} a^{7} - \frac{3117}{7802} a^{6} - \frac{3805}{7802} a^{5} - \frac{1167}{7802} a^{4} - \frac{1437}{3901} a^{3} + \frac{3153}{7802} a^{2} - \frac{2455}{7802} a - \frac{1638}{3901}$, $\frac{1}{15604} a^{32} - \frac{1}{15604} a^{31} + \frac{177}{7802} a^{29} - \frac{1657}{15604} a^{28} + \frac{1815}{15604} a^{27} + \frac{2635}{15604} a^{26} + \frac{3881}{15604} a^{25} + \frac{3651}{15604} a^{24} - \frac{529}{7802} a^{23} - \frac{551}{15604} a^{22} + \frac{11}{166} a^{21} + \frac{1443}{7802} a^{20} + \frac{1717}{15604} a^{19} + \frac{6257}{15604} a^{18} - \frac{4621}{15604} a^{17} - \frac{1686}{3901} a^{16} + \frac{71}{7802} a^{15} + \frac{615}{3901} a^{14} - \frac{7571}{15604} a^{13} + \frac{1279}{15604} a^{12} - \frac{745}{15604} a^{11} - \frac{3369}{7802} a^{10} + \frac{2633}{7802} a^{9} + \frac{5623}{15604} a^{8} - \frac{1869}{3901} a^{7} - \frac{1424}{3901} a^{6} + \frac{522}{3901} a^{5} - \frac{463}{7802} a^{4} - \frac{929}{7802} a^{3} - \frac{619}{3901} a^{2} + \frac{4185}{15604} a - \frac{4875}{15604}$, $\frac{1}{11136590404} a^{33} - \frac{58375}{11136590404} a^{32} + \frac{147155}{2784147601} a^{31} - \frac{118108}{2784147601} a^{30} + \frac{682948219}{11136590404} a^{29} - \frac{1326949859}{11136590404} a^{28} + \frac{79590069}{11136590404} a^{27} - \frac{2012224687}{11136590404} a^{26} + \frac{2140618219}{11136590404} a^{25} + \frac{160393935}{2784147601} a^{24} - \frac{1276836201}{11136590404} a^{23} - \frac{784583969}{5568295202} a^{22} - \frac{690179898}{2784147601} a^{21} + \frac{2226123909}{11136590404} a^{20} - \frac{5561891243}{11136590404} a^{19} - \frac{986997507}{11136590404} a^{18} - \frac{321601486}{2784147601} a^{17} + \frac{555569279}{2784147601} a^{16} - \frac{316094809}{2784147601} a^{15} + \frac{4180099107}{11136590404} a^{14} - \frac{4345632559}{11136590404} a^{13} - \frac{5386713387}{11136590404} a^{12} + \frac{942297633}{5568295202} a^{11} - \frac{788522076}{2784147601} a^{10} + \frac{4927876755}{11136590404} a^{9} + \frac{682603047}{2784147601} a^{8} + \frac{2747774509}{5568295202} a^{7} - \frac{439157177}{5568295202} a^{6} - \frac{1116746316}{2784147601} a^{5} + \frac{698108179}{2784147601} a^{4} - \frac{1385351029}{5568295202} a^{3} - \frac{1345144067}{11136590404} a^{2} - \frac{5020275379}{11136590404} a - \frac{1314840437}{2784147601}$, $\frac{1}{44546361616} a^{34} - \frac{1}{22273180808} a^{33} + \frac{246755}{11136590404} a^{32} + \frac{2190389}{44546361616} a^{31} - \frac{2071237}{44546361616} a^{30} - \frac{1115211297}{22273180808} a^{29} - \frac{2335224917}{44546361616} a^{28} + \frac{792119875}{44546361616} a^{27} + \frac{4786314127}{44546361616} a^{26} - \frac{104106016}{2784147601} a^{25} + \frac{5195053965}{22273180808} a^{24} - \frac{1238645297}{44546361616} a^{23} + \frac{6629489707}{44546361616} a^{22} + \frac{8052781173}{44546361616} a^{21} + \frac{822636155}{5568295202} a^{20} + \frac{5323104167}{44546361616} a^{19} + \frac{5178914225}{22273180808} a^{18} - \frac{16832868543}{44546361616} a^{17} - \frac{1421105411}{5568295202} a^{16} - \frac{6599839119}{44546361616} a^{15} + \frac{3251421375}{11136590404} a^{14} + \frac{6556706745}{44546361616} a^{13} + \frac{1289076555}{22273180808} a^{12} - \frac{15012372651}{44546361616} a^{11} + \frac{11743999123}{44546361616} a^{10} + \frac{16103677477}{44546361616} a^{9} + \frac{19599783905}{44546361616} a^{8} + \frac{7068711751}{22273180808} a^{7} - \frac{3318644215}{11136590404} a^{6} + \frac{3833500039}{11136590404} a^{5} - \frac{7422713707}{22273180808} a^{4} + \frac{13300405993}{44546361616} a^{3} + \frac{295916679}{11136590404} a^{2} - \frac{2782578793}{11136590404} a + \frac{19390123205}{44546361616}$, $\frac{1}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{35} + \frac{4335850082440593340164540635227416714986969397120794872269533664026477691657786104589416032730924355}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{34} + \frac{97680051774829151567538035794124509066831170947160646628056384700821795079049687135936174148787057467}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{33} + \frac{256324339825335605161489437931920150074694777781680745221339639136411377944423161468785155929389347726242265}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{32} + \frac{359347503491064283071629029073959985674955635343039814974251111685502483478587209281905069934837741998293447}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{31} - \frac{34856142568728617730778312088059203331588635273573626237916684000178994059963059019346285894226652593769625}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{30} + \frac{404882624990381886469075053211565238785346029275250044766481255803185489084610063116421148284266500034570087579}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{29} - \frac{2009800273868536862055230235504488247449546773207967401625750209298234840112578849567970805250242435881543897305}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{28} - \frac{1733063006936299000394879508034372215435389823166845603650690174032615951095217437295486536512676606379606047445}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{27} - \frac{665872406130885366182415301598947800031868791380631826873470992714724407918199589407320662386025836643522769019}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{26} - \frac{564028530918735197916092323197426265694943504410754408279882261045292664209445827773365139849513010016054959525}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{25} - \frac{1054770833120743423744753340911940370363382955137215145894574373335457208032831377632753264203334666715080944005}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{24} - \frac{1192423132126203413110322864998618017247624138529534238424106399682845443871200482435195453738356899381830156637}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{23} - \frac{1169566219394157762981218503633220891185598618618071992565581500822307088775257183040832787164731138546289998847}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{22} - \frac{171956381899293863651475474028405129215915016488656365119627758481896101335707767452071426769648835181429848665}{1470923831877954015111793548654797398499316647520315742561442091169549629401697602609877286872300700959491224462} a^{21} + \frac{8185826137612388551954723922824676016044195884377767907273688752476860885676847831979510794896525705182574093}{141775791024381109890293354087209387807163050363403926993873936498269843797753985793723111987691633827420840912} a^{20} - \frac{2427006171959470388450088565975628121604345236073173006730210055487594132470588170889985862476689983930592881381}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{19} + \frac{4422519663490506079513817480520214460332554885613345054910562493394185802455053226707175588215538429155889922989}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{18} + \frac{292732790760877130907049423122912531279240967175868112814239642628327895686151502663773266609416261848366626887}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{17} + \frac{232108753153711547620951149961355966651079421945952185614784794699197966933403317327850103006505476006918939241}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{16} - \frac{966901237677558980263834251794375735290514483960640662599333501139381821853150411340376917808487356665500545759}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{15} + \frac{1875431192334073006144782977352869891245258349246509905550983618553251446336299995236812822652466908612588673361}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{14} + \frac{2470514292367708269109657935768324153345019970536517192939906649013540369203906765693303660117409251526586856985}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{13} + \frac{924084802030529981096472427732197015595370420282186581716038103456852039174724780521850033125862837255378774441}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{12} - \frac{4899474486982815624840198230553215321575217001986059027229866782171876720504337028268191766566630464777994741193}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{11} - \frac{1391591640053559664856835688654105173069107171432471440909415615084788442143321274786872279531665507867339086075}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{10} + \frac{38939570541351458190730742228818341684097447402393725011199824558816191954366423477216866538793885021755432697}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{9} + \frac{2916432694932604238887896254352923208247072467512771762948484424400186739732216914181657996766749472837905774785}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{8} + \frac{815105324759706477061979217444312606561810344362258444340040373684056364783122581269238696240027198449499172057}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{7} - \frac{580613438357022841300263960152591846514383213318786879114927412587726932513394323635436677396264301779301321411}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{6} + \frac{327248798634774490003088471946991925085806304522484438512608448548985687935832754261699077659658743555063152877}{5883695327511816060447174194619189593997266590081262970245768364678198517606790410439509147489202803837964897848} a^{5} + \frac{3340093719524400217229775451496392524977752654157346383285443653863135829228647122463746013124938412228209403369}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a^{4} + \frac{1038250961130911436736816653145099717174429751830251846171292242249622159795980757642992954740134461288983955031}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{3} + \frac{1459563704975421139408272333963118879803875322428945339254716394227013359824107551260409416177389605225787218887}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924} a^{2} + \frac{4453891889892979199592296609025462356564501897772118826993966865360914006250762983934290182181851093412118477665}{11767390655023632120894348389238379187994533180162525940491536729356397035213580820879018294978405607675929795696} a - \frac{561201648908809262166272387221965776645486763275780635899312217177738159275166318131980728501935301110217827743}{2941847663755908030223587097309594796998633295040631485122884182339099258803395205219754573744601401918982448924}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 291218721617730900000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{3}$ | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.4 | $x^{12} + 30 x^{8} + 275 x^{4} + 1000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.4 | $x^{12} + 30 x^{8} + 275 x^{4} + 1000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 5.12.9.4 | $x^{12} + 30 x^{8} + 275 x^{4} + 1000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |