Normalized defining polynomial
\( x^{36} - x^{35} - 52 x^{34} + 47 x^{33} + 1177 x^{32} - 947 x^{31} - 15301 x^{30} + 10771 x^{29} + 127184 x^{28} - 76859 x^{27} - 713805 x^{26} + 363060 x^{25} + 2791702 x^{24} - 1171922 x^{23} - 7758928 x^{22} + 2637723 x^{21} + 15506227 x^{20} - 4188542 x^{19} - 22401208 x^{18} + 4709558 x^{17} + 23361262 x^{16} - 3730447 x^{15} - 17429913 x^{14} + 2049918 x^{13} + 9135431 x^{12} - 759461 x^{11} - 3261522 x^{10} + 180587 x^{9} + 755073 x^{8} - 24948 x^{7} - 104688 x^{6} + 1398 x^{5} + 7575 x^{4} + 75 x^{3} - 216 x^{2} - 9 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $\frac{1}{13886401539812541861565334433263835657093338236742302705687} a^{35} + \frac{2181185730114800308726401878425883303431579530438291140712}{13886401539812541861565334433263835657093338236742302705687} a^{34} + \frac{5721561089897440669601075013004627531573956032676073072535}{13886401539812541861565334433263835657093338236742302705687} a^{33} - \frac{1460003755409034002815779097277203566386836758802250077369}{13886401539812541861565334433263835657093338236742302705687} a^{32} - \frac{6882201112333404080301163772835271109781105011484943540989}{13886401539812541861565334433263835657093338236742302705687} a^{31} - \frac{6044301391038932181566019486161366419882051408548492558741}{13886401539812541861565334433263835657093338236742302705687} a^{30} - \frac{3723940432539540625187889249786691838780072143152911467613}{13886401539812541861565334433263835657093338236742302705687} a^{29} - \frac{5019133374706325358925592483959109056623806177623127826066}{13886401539812541861565334433263835657093338236742302705687} a^{28} + \frac{112519915031983801953824322636047788554769133359736123625}{13886401539812541861565334433263835657093338236742302705687} a^{27} + \frac{1672609239091802217087315025194196918048799522320457629693}{13886401539812541861565334433263835657093338236742302705687} a^{26} + \frac{1815657754267725313090613630532221859905853333379116188026}{13886401539812541861565334433263835657093338236742302705687} a^{25} + \frac{3679907901962411956798144343318070636838156949814177736540}{13886401539812541861565334433263835657093338236742302705687} a^{24} + \frac{6090529190879362203299364906980226138329170949053477484600}{13886401539812541861565334433263835657093338236742302705687} a^{23} + \frac{4715799611624400111278671922257475018627874266441419684126}{13886401539812541861565334433263835657093338236742302705687} a^{22} - \frac{5178261741991002489015072581518940072492085469094802056557}{13886401539812541861565334433263835657093338236742302705687} a^{21} + \frac{3833926942586797159488611261236026777570318650662488161334}{13886401539812541861565334433263835657093338236742302705687} a^{20} + \frac{646138642162059801737386564752873925462804503755508926100}{13886401539812541861565334433263835657093338236742302705687} a^{19} + \frac{2070845987800775078107360982473832068354248530268713391925}{13886401539812541861565334433263835657093338236742302705687} a^{18} + \frac{3615485625304069683940453948772513052719735036065464882194}{13886401539812541861565334433263835657093338236742302705687} a^{17} - \frac{5508327870738665650408770268991714313114830803768529334161}{13886401539812541861565334433263835657093338236742302705687} a^{16} + \frac{1111472866662268860831992264217775329395074252748348503949}{13886401539812541861565334433263835657093338236742302705687} a^{15} + \frac{3314797814198062622675671553490072089936985504839565678916}{13886401539812541861565334433263835657093338236742302705687} a^{14} + \frac{2082635525973232151732829783791140045214451407676608828761}{13886401539812541861565334433263835657093338236742302705687} a^{13} - \frac{2302533799436978464729647646899638025807681778319439301480}{13886401539812541861565334433263835657093338236742302705687} a^{12} - \frac{6880784228610786681856909745019551163233663878912347509648}{13886401539812541861565334433263835657093338236742302705687} a^{11} - \frac{3901806144208877153267902279140376627369410212907083577009}{13886401539812541861565334433263835657093338236742302705687} a^{10} + \frac{5153130928658622841286472221764428713514085089200757596322}{13886401539812541861565334433263835657093338236742302705687} a^{9} + \frac{1140421422245377869984362485074746795055128244067333200257}{13886401539812541861565334433263835657093338236742302705687} a^{8} - \frac{890659475003117147319782588390301441619671124298532507630}{13886401539812541861565334433263835657093338236742302705687} a^{7} - \frac{3652732980667335133597140706548999436687465825396925185715}{13886401539812541861565334433263835657093338236742302705687} a^{6} - \frac{3712596824170530520045489452374865330458577541947722573950}{13886401539812541861565334433263835657093338236742302705687} a^{5} - \frac{6428373482528634200866528105667272185647723773019467060762}{13886401539812541861565334433263835657093338236742302705687} a^{4} - \frac{3079791461676216205649856347906038951127779654903736406296}{13886401539812541861565334433263835657093338236742302705687} a^{3} - \frac{3503224656212104276955089159836766715790692641363052031180}{13886401539812541861565334433263835657093338236742302705687} a^{2} + \frac{3629667515305959887341602094356388791136253206263685039851}{13886401539812541861565334433263835657093338236742302705687} a + \frac{1435317828544409033669468733781742543523909318541468770404}{13886401539812541861565334433263835657093338236742302705687}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2894219484422715000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{18}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||