Normalized defining polynomial
\( x^{36} - 57 x^{34} + 1425 x^{32} - 20634 x^{30} + 192812 x^{28} - 1228749 x^{26} + 5515738 x^{24} - 17801385 x^{22} + 41855195 x^{20} - 72233250 x^{18} + 91675950 x^{16} - 85215855 x^{14} + 57368315 x^{12} - 27413979 x^{10} + 9002257 x^{8} - 1929906 x^{6} + 248007 x^{4} - 16245 x^{2} + 361 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18}$, $\frac{1}{19} a^{19}$, $\frac{1}{19} a^{20}$, $\frac{1}{19} a^{21}$, $\frac{1}{19} a^{22}$, $\frac{1}{19} a^{23}$, $\frac{1}{19} a^{24}$, $\frac{1}{19} a^{25}$, $\frac{1}{19} a^{26}$, $\frac{1}{19} a^{27}$, $\frac{1}{19} a^{28}$, $\frac{1}{19} a^{29}$, $\frac{1}{19} a^{30}$, $\frac{1}{19} a^{31}$, $\frac{1}{19} a^{32}$, $\frac{1}{19} a^{33}$, $\frac{1}{1133457480649920669921619} a^{34} - \frac{1129833074843767550910}{59655656876311614206401} a^{32} - \frac{584420845311264169230}{59655656876311614206401} a^{30} + \frac{516536903470855556280}{59655656876311614206401} a^{28} + \frac{426485966142478410406}{59655656876311614206401} a^{26} - \frac{1089644795199465390648}{59655656876311614206401} a^{24} + \frac{1212202568178481045603}{59655656876311614206401} a^{22} + \frac{611824504041416485143}{59655656876311614206401} a^{20} + \frac{1497818353771826636807}{59655656876311614206401} a^{18} + \frac{20704750119749466256}{59655656876311614206401} a^{16} + \frac{75036984028491332423}{3139771414542716537179} a^{14} + \frac{1065171716273097185112}{3139771414542716537179} a^{12} + \frac{1288958628036690657545}{3139771414542716537179} a^{10} - \frac{207916354302602213365}{3139771414542716537179} a^{8} - \frac{709837311936048233360}{3139771414542716537179} a^{6} - \frac{389131999125917862248}{3139771414542716537179} a^{4} + \frac{676390076979427056924}{3139771414542716537179} a^{2} - \frac{483349771766279855467}{3139771414542716537179}$, $\frac{1}{1133457480649920669921619} a^{35} - \frac{1129833074843767550910}{59655656876311614206401} a^{33} - \frac{584420845311264169230}{59655656876311614206401} a^{31} + \frac{516536903470855556280}{59655656876311614206401} a^{29} + \frac{426485966142478410406}{59655656876311614206401} a^{27} - \frac{1089644795199465390648}{59655656876311614206401} a^{25} + \frac{1212202568178481045603}{59655656876311614206401} a^{23} + \frac{611824504041416485143}{59655656876311614206401} a^{21} + \frac{1497818353771826636807}{59655656876311614206401} a^{19} + \frac{20704750119749466256}{59655656876311614206401} a^{17} + \frac{75036984028491332423}{3139771414542716537179} a^{15} + \frac{1065171716273097185112}{3139771414542716537179} a^{13} + \frac{1288958628036690657545}{3139771414542716537179} a^{11} - \frac{207916354302602213365}{3139771414542716537179} a^{9} - \frac{709837311936048233360}{3139771414542716537179} a^{7} - \frac{389131999125917862248}{3139771414542716537179} a^{5} + \frac{676390076979427056924}{3139771414542716537179} a^{3} - \frac{483349771766279855467}{3139771414542716537179} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12611979161433870000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||