Normalized defining polynomial
\( x^{36} - 65 x^{34} + 1859 x^{32} - 30940 x^{30} + 334113 x^{28} - 2472002 x^{26} + 12905893 x^{24} - 48291581 x^{22} + 130412230 x^{20} - 254526168 x^{18} + 358202936 x^{16} - 361633805 x^{14} + 259562875 x^{12} - 130409526 x^{10} + 44665010 x^{8} - 9967789 x^{6} + 1337973 x^{4} - 92274 x^{2} + 2197 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12}$, $\frac{1}{13} a^{13}$, $\frac{1}{13} a^{14}$, $\frac{1}{13} a^{15}$, $\frac{1}{13} a^{16}$, $\frac{1}{13} a^{17}$, $\frac{1}{13} a^{18}$, $\frac{1}{13} a^{19}$, $\frac{1}{39} a^{20} + \frac{1}{39} a^{18} + \frac{1}{39} a^{16} - \frac{1}{39} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{39} a^{21} + \frac{1}{39} a^{19} + \frac{1}{39} a^{17} - \frac{1}{39} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{507} a^{22} - \frac{1}{39} a^{16} - \frac{1}{39} a^{14} - \frac{1}{39} a^{12} - \frac{4}{13} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{507} a^{23} - \frac{1}{39} a^{17} - \frac{1}{39} a^{15} - \frac{1}{39} a^{13} - \frac{4}{13} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{507} a^{24} - \frac{1}{39} a^{18} - \frac{1}{39} a^{16} - \frac{1}{39} a^{14} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{507} a^{25} - \frac{1}{39} a^{19} - \frac{1}{39} a^{17} - \frac{1}{39} a^{15} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{507} a^{26} + \frac{1}{3}$, $\frac{1}{507} a^{27} + \frac{1}{3} a$, $\frac{1}{507} a^{28} + \frac{1}{3} a^{2}$, $\frac{1}{507} a^{29} + \frac{1}{3} a^{3}$, $\frac{1}{507} a^{30} + \frac{1}{3} a^{4}$, $\frac{1}{507} a^{31} + \frac{1}{3} a^{5}$, $\frac{1}{6591} a^{32} + \frac{2}{507} a^{20} - \frac{1}{39} a^{18} - \frac{1}{39} a^{16} + \frac{1}{39} a^{12} - \frac{1}{3} a^{10} + \frac{14}{39} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{6591} a^{33} + \frac{2}{507} a^{21} - \frac{1}{39} a^{19} - \frac{1}{39} a^{17} + \frac{1}{39} a^{13} - \frac{1}{3} a^{11} + \frac{14}{39} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{57004153970267099349} a^{34} + \frac{835376656865344}{19001384656755699783} a^{32} - \frac{1975901377215895}{4384934920789776873} a^{30} - \frac{66987409448248}{112434228738199407} a^{28} - \frac{214087842904330}{1461644973596592291} a^{26} - \frac{521637265503872}{4384934920789776873} a^{24} + \frac{297244727940534}{487214991198864097} a^{22} - \frac{28461665252057321}{4384934920789776873} a^{20} + \frac{1333865769938608}{112434228738199407} a^{18} + \frac{1603013925018998}{112434228738199407} a^{16} - \frac{4172190872434261}{337302686214598221} a^{14} + \frac{2015926383968474}{337302686214598221} a^{12} + \frac{133704245389143557}{337302686214598221} a^{10} - \frac{103359272919070271}{337302686214598221} a^{8} - \frac{486020040748208}{25946360478046017} a^{6} + \frac{26792179590853}{143350057889757} a^{4} - \frac{5384586204151294}{25946360478046017} a^{2} + \frac{5932909379668054}{25946360478046017}$, $\frac{1}{57004153970267099349} a^{35} + \frac{835376656865344}{19001384656755699783} a^{33} - \frac{1975901377215895}{4384934920789776873} a^{31} - \frac{66987409448248}{112434228738199407} a^{29} - \frac{214087842904330}{1461644973596592291} a^{27} - \frac{521637265503872}{4384934920789776873} a^{25} + \frac{297244727940534}{487214991198864097} a^{23} - \frac{28461665252057321}{4384934920789776873} a^{21} + \frac{1333865769938608}{112434228738199407} a^{19} + \frac{1603013925018998}{112434228738199407} a^{17} - \frac{4172190872434261}{337302686214598221} a^{15} + \frac{2015926383968474}{337302686214598221} a^{13} + \frac{133704245389143557}{337302686214598221} a^{11} - \frac{103359272919070271}{337302686214598221} a^{9} - \frac{486020040748208}{25946360478046017} a^{7} + \frac{26792179590853}{143350057889757} a^{5} - \frac{5384586204151294}{25946360478046017} a^{3} + \frac{5932909379668054}{25946360478046017} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31901682379687710000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |