Normalized defining polynomial
\( x^{36} - 36 x^{34} + 594 x^{32} - 5952 x^{30} + 40455 x^{28} - x^{27} - 197316 x^{26} + 27 x^{25} + 712530 x^{24} - 324 x^{23} - 1937520 x^{22} + 2277 x^{21} + 3996135 x^{20} - 10395 x^{19} - 6249100 x^{18} + 32319 x^{17} + 7354710 x^{16} - 69768 x^{15} - 6418656 x^{14} + 104652 x^{13} + 4056234 x^{12} - 107406 x^{11} - 1790712 x^{10} + 72931 x^{9} + 523260 x^{8} - 30897 x^{7} - 93024 x^{6} + 7398 x^{5} + 8721 x^{4} - 849 x^{3} - 324 x^{2} + 36 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31157843880432600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{15})^+\), 6.6.820125.1, \(\Q(\zeta_{27})^+\), \(\Q(\zeta_{45})^+\), 18.18.1923380668327365689220703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $36$ | R | R | $36$ | $18^{2}$ | $36$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $36$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | $18^{2}$ | $36$ | $36$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||