Normalized defining polynomial
\( x^{36} - x^{35} - 73 x^{34} + 73 x^{33} + 2332 x^{32} - 2332 x^{31} - 43030 x^{30} + 43067 x^{29} + 509935 x^{28} - 511341 x^{27} - 4083615 x^{26} + 4104557 x^{25} + 22653732 x^{24} - 22805506 x^{23} - 87888652 x^{22} + 88382528 x^{21} + 238235194 x^{20} - 238127228 x^{19} - 447142705 x^{18} + 440605249 x^{17} + 572080385 x^{16} - 548111526 x^{15} - 488912671 x^{14} + 444437006 x^{13} + 273263612 x^{12} - 225724125 x^{11} - 97607738 x^{10} + 68588675 x^{9} + 20891644 x^{8} - 11623218 x^{7} - 2202202 x^{6} + 983052 x^{5} + 40590 x^{4} - 37038 x^{3} + 3701 x^{2} - 112 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{487} a^{33} - \frac{145}{487} a^{32} + \frac{165}{487} a^{31} + \frac{208}{487} a^{30} + \frac{238}{487} a^{29} + \frac{219}{487} a^{28} - \frac{96}{487} a^{27} - \frac{107}{487} a^{26} - \frac{205}{487} a^{25} + \frac{130}{487} a^{24} - \frac{105}{487} a^{23} - \frac{200}{487} a^{22} + \frac{156}{487} a^{21} + \frac{19}{487} a^{20} - \frac{205}{487} a^{19} + \frac{3}{487} a^{18} + \frac{135}{487} a^{17} - \frac{103}{487} a^{16} + \frac{52}{487} a^{15} + \frac{75}{487} a^{14} + \frac{240}{487} a^{13} + \frac{49}{487} a^{12} + \frac{89}{487} a^{11} + \frac{52}{487} a^{10} - \frac{29}{487} a^{9} + \frac{152}{487} a^{8} + \frac{186}{487} a^{7} - \frac{62}{487} a^{6} - \frac{41}{487} a^{5} - \frac{56}{487} a^{4} - \frac{93}{487} a^{3} + \frac{92}{487} a + \frac{166}{487}$, $\frac{1}{72713152327} a^{34} + \frac{34330185}{72713152327} a^{33} + \frac{1472329655}{72713152327} a^{32} + \frac{8518273036}{72713152327} a^{31} - \frac{4423559032}{72713152327} a^{30} - \frac{8619842899}{72713152327} a^{29} - \frac{26040729452}{72713152327} a^{28} + \frac{3294187153}{72713152327} a^{27} + \frac{20037938888}{72713152327} a^{26} + \frac{36015884678}{72713152327} a^{25} + \frac{968108071}{72713152327} a^{24} - \frac{19016271266}{72713152327} a^{23} - \frac{36181569953}{72713152327} a^{22} - \frac{8675837990}{72713152327} a^{21} + \frac{33694709358}{72713152327} a^{20} - \frac{17254994692}{72713152327} a^{19} - \frac{1051356663}{72713152327} a^{18} - \frac{26996248405}{72713152327} a^{17} - \frac{28780484176}{72713152327} a^{16} - \frac{8224283274}{72713152327} a^{15} + \frac{30967978045}{72713152327} a^{14} - \frac{32137937990}{72713152327} a^{13} - \frac{15038512162}{72713152327} a^{12} + \frac{32172705245}{72713152327} a^{11} + \frac{22648070123}{72713152327} a^{10} - \frac{5937500065}{72713152327} a^{9} - \frac{29335652284}{72713152327} a^{8} + \frac{24185359011}{72713152327} a^{7} - \frac{26485628200}{72713152327} a^{6} + \frac{3321401247}{72713152327} a^{5} - \frac{6263525504}{72713152327} a^{4} - \frac{7142596526}{72713152327} a^{3} - \frac{2910058668}{72713152327} a^{2} + \frac{30974856039}{72713152327} a + \frac{35331927660}{72713152327}$, $\frac{1}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{35} - \frac{10248285015864411327756390799779596458295926529875081669212013098223819}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{34} + \frac{9032017366993452727113480808370255967006771898948773136581128937602656905478952}{16833472527601308912127237156438174199229624800552445767036007557623413816131854799} a^{33} + \frac{297541072949466421582952187161516656710682197563657354451451511568111168811012641139}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{32} + \frac{138144154643505427255429603618617540417462377270821293007194394817101726588411877965}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{31} - \frac{159314069381762154028820210405407378123570598561277279106291490022762804254897738915}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{30} - \frac{288906340316313902783132748470158029707204333256311118521763419758852350943310047790}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{29} - \frac{43847736711316190581905153572769928598937964934814003826246650770182138066732106926}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{28} + \frac{194890835229065449079117946665898014819254362654673165588654292682359445185160260260}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{27} - \frac{191124437227333211767437447407167573499795162329263995478201530351838866230432553249}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{26} + \frac{333553735259766459185041359399266896969797183463037648694432235448873305822169295143}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{25} + \frac{221699669863712666766510323747982126607702888602820499433461273916783144888347057690}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{24} + \frac{115902503915054525097849926176624470438972746241726311890883594066951312497219138073}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{23} + \frac{331377329938017221683931495952614389961957265328831446940731325885837532734297302226}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{22} + \frac{251248228151482107996284268658399832985408098796131169318381289753844289338164982417}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{21} - \frac{136340766426326575266891001603789952567414270329813899477330524133722253134499961497}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{20} - \frac{149731478661410210886735097187605134138568811183446009906367498446460329321097925557}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{19} + \frac{194106764790463976875964211100477119116726053220715789002132663733237800181129884543}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{18} + \frac{197772837806390194381356161205741400356929965106516200732674818950318878454160454957}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{17} + \frac{124803963438419814596532600775480881420603494608731268372399456868669275939951896329}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{16} - \frac{103541314284982458995742227090907606832650072333213236549613223728778905710452213225}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{15} - \frac{7909082349024423259609570579196828211594278706574154616866009888593544558528105199}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{14} - \frac{153880389851713213660420461733892493045061435909912163459549679553510021742002767642}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{13} + \frac{65882338710130628445745628734110111435131849081856391826086219612290196923499182500}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{12} + \frac{219848271157747479164679769475022792783930068937987007504089808256918191082010611923}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{11} - \frac{218543057692960971558985886177594839616641573209305554084426657869500209545055759583}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{10} + \frac{278910768698778873230284919003984900714142778402228267060269059581733285559957623257}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{9} + \frac{145679967836062498459829311582369264326022895566271948457669083456731844553370418634}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{8} + \frac{9127374055384628068428576437586117947702284702026968351719334023379878097845936756}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{7} + \frac{202480411443192128805361429505162687908675880563013903730936347713052513555971348838}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{6} - \frac{319633257184367197409472355054529339764094367596593068582400600746309938516571983288}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{5} + \frac{171034682279986660040559784951189281420316569290263274504074520563458092338801116072}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{4} + \frac{335658546416366178714758862933501661591734170624570373373650593600789544399097627743}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{3} - \frac{160586908964774616361922442164971351446158896995988015279410882980388827460344059626}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a^{2} - \frac{148343674902720598116484785992907933313802611440042490099790223526476019859591568074}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357} a + \frac{195599921496135052880044027714833087121992149005206911086347601365559339677326396684}{723839318686856283221471197726841490566873866423755167982548324977806794093669756357}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11027752026555245000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{185}) \), 3.3.1369.1, 4.4.6331625.1, 6.6.8667994625.1, 9.9.3512479453921.1, 12.12.347495355038008619140625.2, 18.18.891578009425849912898724447265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | $36$ | R | $36$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | $36$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ | R | $18^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | $36$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 37 | Data not computed | ||||||