Properties

Label 36.36.5298344419...5248.1
Degree $36$
Signature $[36, 0]$
Discriminant $2^{36}\cdot 37^{35}$
Root discriminant $66.94$
Ramified primes $2, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![37, 0, -2109, 0, 35853, 0, -286824, 0, 1314610, 0, -3848222, 0, 7696444, 0, -10994920, 0, 11560835, 0, -9126975, 0, 5476185, 0, -2510820, 0, 878787, 0, -232841, 0, 45880, 0, -6512, 0, 629, 0, -37, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 37*x^34 + 629*x^32 - 6512*x^30 + 45880*x^28 - 232841*x^26 + 878787*x^24 - 2510820*x^22 + 5476185*x^20 - 9126975*x^18 + 11560835*x^16 - 10994920*x^14 + 7696444*x^12 - 3848222*x^10 + 1314610*x^8 - 286824*x^6 + 35853*x^4 - 2109*x^2 + 37)
 
gp: K = bnfinit(x^36 - 37*x^34 + 629*x^32 - 6512*x^30 + 45880*x^28 - 232841*x^26 + 878787*x^24 - 2510820*x^22 + 5476185*x^20 - 9126975*x^18 + 11560835*x^16 - 10994920*x^14 + 7696444*x^12 - 3848222*x^10 + 1314610*x^8 - 286824*x^6 + 35853*x^4 - 2109*x^2 + 37, 1)
 

Normalized defining polynomial

\( x^{36} - 37 x^{34} + 629 x^{32} - 6512 x^{30} + 45880 x^{28} - 232841 x^{26} + 878787 x^{24} - 2510820 x^{22} + 5476185 x^{20} - 9126975 x^{18} + 11560835 x^{16} - 10994920 x^{14} + 7696444 x^{12} - 3848222 x^{10} + 1314610 x^{8} - 286824 x^{6} + 35853 x^{4} - 2109 x^{2} + 37 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[36, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(529834441956838404754859356629890081471398054377951743656484405248=2^{36}\cdot 37^{35}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $66.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(148=2^{2}\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{148}(1,·)$, $\chi_{148}(131,·)$, $\chi_{148}(135,·)$, $\chi_{148}(9,·)$, $\chi_{148}(141,·)$, $\chi_{148}(15,·)$, $\chi_{148}(145,·)$, $\chi_{148}(19,·)$, $\chi_{148}(21,·)$, $\chi_{148}(23,·)$, $\chi_{148}(25,·)$, $\chi_{148}(31,·)$, $\chi_{148}(33,·)$, $\chi_{148}(35,·)$, $\chi_{148}(39,·)$, $\chi_{148}(41,·)$, $\chi_{148}(43,·)$, $\chi_{148}(49,·)$, $\chi_{148}(91,·)$, $\chi_{148}(51,·)$, $\chi_{148}(53,·)$, $\chi_{148}(137,·)$, $\chi_{148}(59,·)$, $\chi_{148}(65,·)$, $\chi_{148}(73,·)$, $\chi_{148}(55,·)$, $\chi_{148}(77,·)$, $\chi_{148}(79,·)$, $\chi_{148}(81,·)$, $\chi_{148}(85,·)$, $\chi_{148}(87,·)$, $\chi_{148}(143,·)$, $\chi_{148}(101,·)$, $\chi_{148}(103,·)$, $\chi_{148}(119,·)$, $\chi_{148}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $35$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2745123952948895000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{36}$ (as 36T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{37}) \), 3.3.1369.1, 4.4.810448.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.12.728750578808669851648.1, \(\Q(\zeta_{37})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }^{4}$ $36$ $18^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ $36$ $36$ $36$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ R $18^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{9}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
37Data not computed