Normalized defining polynomial
\( x^{36} - 68 x^{34} + 2018 x^{32} - 34520 x^{30} + 379376 x^{28} - 2832128 x^{26} + 14836664 x^{24} - 55646624 x^{22} + 151170256 x^{20} - 298819648 x^{18} + 428794592 x^{16} - 442226304 x^{14} + 321513984 x^{12} - 159622144 x^{10} + 51473664 x^{8} - 9968640 x^{6} + 1025280 x^{4} - 46080 x^{2} + 512 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{32} a^{22}$, $\frac{1}{32} a^{23}$, $\frac{1}{64} a^{24}$, $\frac{1}{64} a^{25}$, $\frac{1}{64} a^{26}$, $\frac{1}{64} a^{27}$, $\frac{1}{128} a^{28}$, $\frac{1}{128} a^{29}$, $\frac{1}{128} a^{30}$, $\frac{1}{128} a^{31}$, $\frac{1}{256} a^{32}$, $\frac{1}{256} a^{33}$, $\frac{1}{9838194480600500022779146496} a^{34} + \frac{3047648600927921434859255}{9838194480600500022779146496} a^{32} - \frac{7821866586152340547902955}{4919097240300250011389573248} a^{30} + \frac{556737791481845673381583}{307443577518765625711848328} a^{28} - \frac{3059496375300335479604393}{1229774310075062502847393312} a^{26} + \frac{16734253114894943123475575}{2459548620150125005694786624} a^{24} + \frac{13690648011774797429922561}{1229774310075062502847393312} a^{22} + \frac{4823664717118115182357807}{1229774310075062502847393312} a^{20} - \frac{2424414434422235086932437}{153721788759382812855924164} a^{18} - \frac{899495020033158764632468}{38430447189845703213981041} a^{16} + \frac{10555225049744598637305425}{307443577518765625711848328} a^{14} - \frac{435896290189265978280496}{38430447189845703213981041} a^{12} - \frac{1088674020444146639094483}{153721788759382812855924164} a^{10} + \frac{16454158736600611455034041}{153721788759382812855924164} a^{8} + \frac{11521181360004005359991297}{76860894379691406427962082} a^{6} + \frac{7410693796314200244070708}{38430447189845703213981041} a^{4} + \frac{1259630643487964574080605}{38430447189845703213981041} a^{2} + \frac{10831374811041636665356826}{38430447189845703213981041}$, $\frac{1}{9838194480600500022779146496} a^{35} + \frac{3047648600927921434859255}{9838194480600500022779146496} a^{33} - \frac{7821866586152340547902955}{4919097240300250011389573248} a^{31} + \frac{556737791481845673381583}{307443577518765625711848328} a^{29} - \frac{3059496375300335479604393}{1229774310075062502847393312} a^{27} + \frac{16734253114894943123475575}{2459548620150125005694786624} a^{25} + \frac{13690648011774797429922561}{1229774310075062502847393312} a^{23} + \frac{4823664717118115182357807}{1229774310075062502847393312} a^{21} - \frac{2424414434422235086932437}{153721788759382812855924164} a^{19} - \frac{899495020033158764632468}{38430447189845703213981041} a^{17} + \frac{10555225049744598637305425}{307443577518765625711848328} a^{15} - \frac{435896290189265978280496}{38430447189845703213981041} a^{13} - \frac{1088674020444146639094483}{153721788759382812855924164} a^{11} + \frac{16454158736600611455034041}{153721788759382812855924164} a^{9} + \frac{11521181360004005359991297}{76860894379691406427962082} a^{7} + \frac{7410693796314200244070708}{38430447189845703213981041} a^{5} + \frac{1259630643487964574080605}{38430447189845703213981041} a^{3} + \frac{10831374811041636665356826}{38430447189845703213981041} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 990111643439917000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.361.1, \(\Q(\zeta_{16})^+\), 6.6.66724352.1, \(\Q(\zeta_{19})^+\), 12.12.145887695661298614272.1, 18.18.38713951190154487490850848768.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $36$ | $36$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | $36$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | R | $18^{2}$ | $36$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{9}$ | $18^{2}$ | $36$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{4}$ | $36$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||