Normalized defining polynomial
\( x^{36} - 54 x^{34} - 4 x^{33} + 1269 x^{32} + 183 x^{31} - 17119 x^{30} - 3555 x^{29} + 147555 x^{28} + 38637 x^{27} - 858159 x^{26} - 261666 x^{25} + 3476891 x^{24} + 1169019 x^{23} - 10013571 x^{22} - 3567239 x^{21} + 20757231 x^{20} + 7596969 x^{19} - 31151513 x^{18} - 11422746 x^{17} + 33816645 x^{16} + 12157547 x^{15} - 26324586 x^{14} - 9097842 x^{13} + 14426662 x^{12} + 4701951 x^{11} - 5391504 x^{10} - 1623250 x^{9} + 1304280 x^{8} + 353091 x^{7} - 187354 x^{6} - 43479 x^{5} + 13686 x^{4} + 2408 x^{3} - 360 x^{2} - 24 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{26} - \frac{1}{2} a^{25} - \frac{1}{2} a^{24} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{2} a^{19} - \frac{1}{2} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{21} - \frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{24} - \frac{1}{2} a^{23} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{25} - \frac{1}{2} a^{24} - \frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{33} - \frac{1}{2} a^{26} - \frac{1}{2} a^{25} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{34} - \frac{1}{2} a^{25} - \frac{1}{2} a^{24} - \frac{1}{2} a^{23} - \frac{1}{2} a^{22} - \frac{1}{2} a^{21} - \frac{1}{2} a^{20} - \frac{1}{2} a^{19} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{65390383628944674791806320901162606644591953729538346212992554} a^{35} - \frac{412350709804256477553150509654194049842723765852697131935494}{32695191814472337395903160450581303322295976864769173106496277} a^{34} + \frac{7986703662774878339049633997096657639694275308420948169764354}{32695191814472337395903160450581303322295976864769173106496277} a^{33} + \frac{827590782179691723343598480214469217403785337015890412173985}{32695191814472337395903160450581303322295976864769173106496277} a^{32} - \frac{7066793753674735812718561884440421192487885921028327254900656}{32695191814472337395903160450581303322295976864769173106496277} a^{31} + \frac{4709781387427034152049054864461309840288049521096234143386687}{32695191814472337395903160450581303322295976864769173106496277} a^{30} + \frac{4034553437470880676407576281108882274145331300947143336129999}{32695191814472337395903160450581303322295976864769173106496277} a^{29} + \frac{13734337423020128696530032131784265612218582884811151198160767}{65390383628944674791806320901162606644591953729538346212992554} a^{28} - \frac{7444355932652210865508457408064183260320650226413292720740339}{65390383628944674791806320901162606644591953729538346212992554} a^{27} - \frac{3787947303184083675976905931387207214039258235823133923581573}{32695191814472337395903160450581303322295976864769173106496277} a^{26} + \frac{3684111338518417035726425263549710638531755071049588376530823}{32695191814472337395903160450581303322295976864769173106496277} a^{25} - \frac{7611854921837380965495773244698176761320014694971671224251396}{32695191814472337395903160450581303322295976864769173106496277} a^{24} - \frac{1632500470238413678864690009952314824363226110165805992097122}{32695191814472337395903160450581303322295976864769173106496277} a^{23} - \frac{4110644591874765949323886247702329480618791679814104024346533}{32695191814472337395903160450581303322295976864769173106496277} a^{22} - \frac{2792733448731905082170741425383252093490334970423058951289485}{65390383628944674791806320901162606644591953729538346212992554} a^{21} - \frac{11906930987959871134650150679763541093557726108551446953022993}{32695191814472337395903160450581303322295976864769173106496277} a^{20} + \frac{24870277633506483665372000388098560110504461162624972390675207}{65390383628944674791806320901162606644591953729538346212992554} a^{19} - \frac{4912135710787789193033266738068202484862617581718523940396206}{32695191814472337395903160450581303322295976864769173106496277} a^{18} - \frac{4305412191178385105672947744080694603875212157248419650955199}{65390383628944674791806320901162606644591953729538346212992554} a^{17} - \frac{7776389511339768558555686899802522897364711175799331476322280}{32695191814472337395903160450581303322295976864769173106496277} a^{16} - \frac{2177189127602133478472167349771271217436308534496779135437143}{32695191814472337395903160450581303322295976864769173106496277} a^{15} + \frac{11230687264802538342994700513325687640517302751040630590495439}{65390383628944674791806320901162606644591953729538346212992554} a^{14} + \frac{6748952092061948403612470727495160218679686946913141179009205}{65390383628944674791806320901162606644591953729538346212992554} a^{13} + \frac{19472453521380252705718502312406616771101438115619177848812593}{65390383628944674791806320901162606644591953729538346212992554} a^{12} + \frac{19451820420788126450772170728252672501700311251339265506520413}{65390383628944674791806320901162606644591953729538346212992554} a^{11} + \frac{8749859376077797986787412301720493650395858014976549468117387}{65390383628944674791806320901162606644591953729538346212992554} a^{10} + \frac{31885710005161663887470489742522150682027778417336096323581263}{65390383628944674791806320901162606644591953729538346212992554} a^{9} - \frac{2015785172998845686743262773882431911569714097450734367064423}{65390383628944674791806320901162606644591953729538346212992554} a^{8} + \frac{13107581863988380088723573039184175625729089302817875724023507}{65390383628944674791806320901162606644591953729538346212992554} a^{7} - \frac{5015025634568345202155268141470790056008431271259146223785700}{32695191814472337395903160450581303322295976864769173106496277} a^{6} - \frac{7243340778092799369414575354672125279023404345578834879833290}{32695191814472337395903160450581303322295976864769173106496277} a^{5} + \frac{15323284517745873531915712284646036967576583286833092179077834}{32695191814472337395903160450581303322295976864769173106496277} a^{4} - \frac{7239473431976332671059675290468459406337689283001592181372341}{32695191814472337395903160450581303322295976864769173106496277} a^{3} - \frac{2604017882743504561659304755387960247939181767139819540869584}{32695191814472337395903160450581303322295976864769173106496277} a^{2} - \frac{1576446155227895715539831557839052378128479991677463506097864}{32695191814472337395903160450581303322295976864769173106496277} a + \frac{6104807135642630302213633635772862520053683532991178500735746}{32695191814472337395903160450581303322295976864769173106496277}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268381905239177630000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||