Normalized defining polynomial
\( x^{36} - x^{35} - 55 x^{34} + 54 x^{33} + 1316 x^{32} - 1262 x^{31} - 18056 x^{30} + 16794 x^{29} + 157962 x^{28} - 141168 x^{27} - 929619 x^{26} + 788451 x^{25} + 3797668 x^{24} - 3009217 x^{23} - 10994500 x^{22} + 7985283 x^{21} + 22875412 x^{20} - 14890129 x^{19} - 34467709 x^{18} + 19586929 x^{17} + 37621312 x^{16} - 18102232 x^{15} - 29492311 x^{14} + 11597407 x^{13} + 16278597 x^{12} - 5027655 x^{11} - 6107727 x^{10} + 1424143 x^{9} + 1470387 x^{8} - 252736 x^{7} - 206783 x^{6} + 26779 x^{5} + 14445 x^{4} - 1460 x^{3} - 340 x^{2} + 20 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{229} a^{33} + \frac{91}{229} a^{32} + \frac{73}{229} a^{31} - \frac{39}{229} a^{30} + \frac{73}{229} a^{29} + \frac{60}{229} a^{28} - \frac{30}{229} a^{27} - \frac{62}{229} a^{26} - \frac{31}{229} a^{25} + \frac{23}{229} a^{24} + \frac{58}{229} a^{23} + \frac{14}{229} a^{22} + \frac{104}{229} a^{21} - \frac{104}{229} a^{20} + \frac{7}{229} a^{19} - \frac{58}{229} a^{18} - \frac{86}{229} a^{17} - \frac{19}{229} a^{16} - \frac{22}{229} a^{15} - \frac{70}{229} a^{14} + \frac{5}{229} a^{13} + \frac{23}{229} a^{12} + \frac{48}{229} a^{11} + \frac{72}{229} a^{10} - \frac{85}{229} a^{9} - \frac{43}{229} a^{8} - \frac{90}{229} a^{7} + \frac{38}{229} a^{6} - \frac{65}{229} a^{5} + \frac{60}{229} a^{4} + \frac{56}{229} a^{3} + \frac{28}{229} a^{2} + \frac{71}{229} a + \frac{15}{229}$, $\frac{1}{229} a^{34} + \frac{36}{229} a^{32} - \frac{41}{229} a^{31} - \frac{42}{229} a^{30} + \frac{58}{229} a^{29} + \frac{6}{229} a^{28} - \frac{80}{229} a^{27} - \frac{114}{229} a^{26} + \frac{96}{229} a^{25} + \frac{26}{229} a^{24} + \frac{3}{229} a^{23} - \frac{25}{229} a^{22} + \frac{50}{229} a^{21} + \frac{82}{229} a^{20} - \frac{8}{229} a^{19} - \frac{75}{229} a^{18} + \frac{21}{229} a^{17} + \frac{104}{229} a^{16} + \frac{100}{229} a^{15} - \frac{37}{229} a^{14} + \frac{26}{229} a^{13} + \frac{16}{229} a^{12} + \frac{55}{229} a^{11} + \frac{4}{229} a^{10} - \frac{94}{229} a^{9} - \frac{70}{229} a^{8} - \frac{16}{229} a^{7} - \frac{88}{229} a^{6} + \frac{21}{229} a^{5} + \frac{92}{229} a^{4} - \frac{30}{229} a^{3} + \frac{42}{229} a^{2} - \frac{34}{229} a + \frac{9}{229}$, $\frac{1}{441740965663486218662287302998401975424365701930646103174713} a^{35} + \frac{357595585314283523591323451245890101023030415391987307200}{441740965663486218662287302998401975424365701930646103174713} a^{34} - \frac{94111012951706176219291454608164720680340498265650698086}{441740965663486218662287302998401975424365701930646103174713} a^{33} + \frac{31534299450091099861835309367928985581200338884495074418720}{441740965663486218662287302998401975424365701930646103174713} a^{32} + \frac{186776652920464282901399911333288274120692099374664522112865}{441740965663486218662287302998401975424365701930646103174713} a^{31} - \frac{95392592962537822627342846066355354573607242462356573706385}{441740965663486218662287302998401975424365701930646103174713} a^{30} + \frac{188582167313035840459179668623583819521282149962144406824740}{441740965663486218662287302998401975424365701930646103174713} a^{29} + \frac{104541034748463702696217527874242463082095951462416995047411}{441740965663486218662287302998401975424365701930646103174713} a^{28} + \frac{62396213494574351753814279967753208830275525396011703147277}{441740965663486218662287302998401975424365701930646103174713} a^{27} - \frac{15099485814470154362504447992816097221137249313492907648137}{441740965663486218662287302998401975424365701930646103174713} a^{26} - \frac{62007554570502671187737297350478749107978379168465485543747}{441740965663486218662287302998401975424365701930646103174713} a^{25} - \frac{151926908726739423829058201293441729572623937156095067997904}{441740965663486218662287302998401975424365701930646103174713} a^{24} - \frac{25650382700087484460317016142575425136260552000768825057742}{441740965663486218662287302998401975424365701930646103174713} a^{23} + \frac{8670115152629109058766587941647751193920992139014276868570}{441740965663486218662287302998401975424365701930646103174713} a^{22} - \frac{135797387437641697036351524098037991507121134757122231147571}{441740965663486218662287302998401975424365701930646103174713} a^{21} - \frac{121058526373069653228694515731132470427750128054691702331663}{441740965663486218662287302998401975424365701930646103174713} a^{20} - \frac{77182864840896914036580098186678011866489710004900067287514}{441740965663486218662287302998401975424365701930646103174713} a^{19} - \frac{175505519112945877699778066809722448905951901805436473722586}{441740965663486218662287302998401975424365701930646103174713} a^{18} - \frac{57703247960868025806864646499904164406958087605526428676575}{441740965663486218662287302998401975424365701930646103174713} a^{17} - \frac{194269433050581122820665664265420256783961211877730611435127}{441740965663486218662287302998401975424365701930646103174713} a^{16} + \frac{219502153449508094597671318115930083471489975957147966379311}{441740965663486218662287302998401975424365701930646103174713} a^{15} - \frac{151266686686050599742491277289492826987984305793974173624131}{441740965663486218662287302998401975424365701930646103174713} a^{14} + \frac{3208277628672821374942148477608668444259182239058753038614}{441740965663486218662287302998401975424365701930646103174713} a^{13} + \frac{119665018566510022312498550374317295428560640092223015628309}{441740965663486218662287302998401975424365701930646103174713} a^{12} + \frac{39893887416477180610787461230946552703465391477855234134140}{441740965663486218662287302998401975424365701930646103174713} a^{11} - \frac{181662172802038593113230274627003329019560885423254169591926}{441740965663486218662287302998401975424365701930646103174713} a^{10} - \frac{90326223578878651225277250991394786691857820851639935267202}{441740965663486218662287302998401975424365701930646103174713} a^{9} - \frac{179272789193083403132327587300236935743904643859389635355889}{441740965663486218662287302998401975424365701930646103174713} a^{8} - \frac{178124971446421370943302552805252113412343012193860651340700}{441740965663486218662287302998401975424365701930646103174713} a^{7} - \frac{67719797599206296583153368398395141732728831222271946146538}{441740965663486218662287302998401975424365701930646103174713} a^{6} + \frac{55165792419466959479704101582569941665968697690926882021027}{441740965663486218662287302998401975424365701930646103174713} a^{5} - \frac{51465552479406017519341929321194670742359614378815539105513}{441740965663486218662287302998401975424365701930646103174713} a^{4} - \frac{156842035679304892105137195140783928498383407091866892474514}{441740965663486218662287302998401975424365701930646103174713} a^{3} - \frac{73895714639313847079535252078815804904091412785923539498052}{441740965663486218662287302998401975424365701930646103174713} a^{2} + \frac{76171081353096991602199208274581985037070275077740092910833}{441740965663486218662287302998401975424365701930646103174713} a - \frac{188150945813755343231925846108372910072924874142424466967563}{441740965663486218662287302998401975424365701930646103174713}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 736998020653083800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||