Normalized defining polynomial
\( x^{36} - x^{35} - 62 x^{34} + 61 x^{33} + 1673 x^{32} - 1613 x^{31} - 25920 x^{30} + 24367 x^{29} + 256293 x^{28} - 233479 x^{27} - 1701570 x^{26} + 1490905 x^{25} + 7778369 x^{24} - 6496035 x^{23} - 24747903 x^{22} + 19486869 x^{21} + 54933520 x^{20} - 40274564 x^{19} - 84897695 x^{18} + 57204830 x^{17} + 90928152 x^{16} - 55712580 x^{15} - 66860091 x^{14} + 37010766 x^{13} + 33119347 x^{12} - 16533426 x^{11} - 10663861 x^{10} + 4809468 x^{9} + 2090230 x^{8} - 852134 x^{7} - 220627 x^{6} + 79647 x^{5} + 10022 x^{4} - 2741 x^{3} - 216 x^{2} + 24 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{3} a^{32} + \frac{1}{3} a^{30} + \frac{1}{3} a^{28} - \frac{1}{3} a^{26} + \frac{1}{3} a^{25} + \frac{1}{3} a^{23} - \frac{1}{3} a^{19} - \frac{1}{3} a^{18} - \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{33} + \frac{1}{3} a^{31} + \frac{1}{3} a^{29} - \frac{1}{3} a^{27} + \frac{1}{3} a^{26} + \frac{1}{3} a^{24} - \frac{1}{3} a^{20} - \frac{1}{3} a^{19} - \frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{34} + \frac{1}{9} a^{33} - \frac{1}{9} a^{32} + \frac{1}{9} a^{31} - \frac{4}{9} a^{30} + \frac{4}{9} a^{29} - \frac{1}{3} a^{28} + \frac{1}{3} a^{26} - \frac{4}{9} a^{25} + \frac{4}{9} a^{24} - \frac{2}{9} a^{23} + \frac{2}{9} a^{21} + \frac{4}{9} a^{20} - \frac{1}{3} a^{19} - \frac{2}{9} a^{17} + \frac{1}{3} a^{16} - \frac{2}{9} a^{15} + \frac{2}{9} a^{14} - \frac{1}{3} a^{13} + \frac{4}{9} a^{12} - \frac{4}{9} a^{11} - \frac{2}{9} a^{10} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} + \frac{4}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{35} - \frac{2344547413816685980340047792014972486268055712057174740463770403814659694308251}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{34} + \frac{10273333258048115534959968536361150489270813476005728031220623846195391953154537}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{33} - \frac{3824820536516350762811468667620104894556985817093258733791624692986954449644215}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{32} - \frac{5333083084573566528495511087286363791067679122747258703890321568210400181937934}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{31} + \frac{4736216478176351505501614904748928910274877941300135196416497698408852494383475}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{30} - \frac{6637503002698340239069668565518524220442813991793445301084695516415217005460334}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{29} - \frac{2404866869614325466749659235985856547680153409526602838879220980542363758489798}{7246543291003768889392956102835587231021051114899173003468095180976252556880277} a^{28} + \frac{5580979283643912813361554941342337656067498021922052024741258232333400863266227}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{27} - \frac{6014002644561326297457221702393424046094015545545422622703940143099906573876534}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{26} + \frac{18694284069558587761734555824455555592023111100149237644650995269244011845926354}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{25} - \frac{8923864111196950190203595902181529592037067946527366300427178794184240383070687}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{24} + \frac{2954826304923347113120562917769772127618404083158475851027260521700073556514157}{7246543291003768889392956102835587231021051114899173003468095180976252556880277} a^{23} + \frac{4701843131303471126818913221092939332813670328885137847769204253479037928563866}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{22} - \frac{21568166055119328773524451363655983532935851352424637348548401037312156548237696}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{21} - \frac{7666737231839119405851060417490068382778360855588669896227223963637282241540940}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{20} - \frac{1668489464058546934084112000394043011583140941268167366918679921866717572971139}{7246543291003768889392956102835587231021051114899173003468095180976252556880277} a^{19} - \frac{21238378559886351052454597287838269106246287237709595896678141058524693811851525}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{18} + \frac{1710537684411284439219049335167232205549502476510613910945338196360896072135587}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{17} + \frac{2627785523774207787932264971162873293173651749081009133662960786114753259531698}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{16} - \frac{30347651140502773633943413965343431671600378108220719239673871122819584033931539}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{15} + \frac{10678322872390065091638190446110094430817990695646143821634770243146363672470190}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{14} - \frac{19411256803216550067712971150129854295091401159146405646562572878595729190550132}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{13} - \frac{5227127210662717316455320270569315812655690230970420482638840523844452994427262}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{12} - \frac{16159610912493231435633394372302808056572579546990744255500999990146635205104537}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{11} - \frac{1053656005881909604785104757316124381579183883869712808527775029988118259968850}{7246543291003768889392956102835587231021051114899173003468095180976252556880277} a^{10} - \frac{4635212183986521948712132037160048216769822311367331987650949805065291923399547}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{9} + \frac{7350243227201402290595773253845321206783488058802643061319736831777909950874846}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{8} - \frac{20252409871286943338477113930634020204559000328376576460683635921265687336000481}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{7} - \frac{11353248543117521259575424423249561503689803415698342957605150453916477326072141}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{6} + \frac{952448825667729637898166828487683897657907559740883642809342573801273921172507}{7246543291003768889392956102835587231021051114899173003468095180976252556880277} a^{5} + \frac{23785384671135491292970464532367968643052478398772566300132039633084974974812389}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{4} - \frac{851074541283446813747155584729434546408437308511268517358069780286117992252211}{21739629873011306668178868308506761693063153344697519010404285542928757670640831} a^{3} - \frac{17624808805749622685797567294959135536535252189375214661574388579073524053713110}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a^{2} - \frac{2752672236043256762074110505997982271672455437030075681994246448785157938050954}{65218889619033920004536604925520285079189460034092557031212856628786273011922493} a - \frac{798950920977298789542078715640956712883495754739350266038750409746519752921256}{7246543291003768889392956102835587231021051114899173003468095180976252556880277}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2899632352845428700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |