Properties

Label 36.36.4121664261...5504.1
Degree $36$
Signature $[36, 0]$
Discriminant $2^{72}\cdot 3^{90}$
Root discriminant $62.35$
Ramified primes $2, 3$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -324, 0, 8721, 0, -93024, 0, 523260, 0, -1790712, 0, 4056234, 0, -6418656, 0, 7354710, 0, -6249100, 0, 3996135, 0, -1937520, 0, 712530, 0, -197316, 0, 40455, 0, -5952, 0, 594, 0, -36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - 197316*x^26 + 712530*x^24 - 1937520*x^22 + 3996135*x^20 - 6249100*x^18 + 7354710*x^16 - 6418656*x^14 + 4056234*x^12 - 1790712*x^10 + 523260*x^8 - 93024*x^6 + 8721*x^4 - 324*x^2 + 1)
 
gp: K = bnfinit(x^36 - 36*x^34 + 594*x^32 - 5952*x^30 + 40455*x^28 - 197316*x^26 + 712530*x^24 - 1937520*x^22 + 3996135*x^20 - 6249100*x^18 + 7354710*x^16 - 6418656*x^14 + 4056234*x^12 - 1790712*x^10 + 523260*x^8 - 93024*x^6 + 8721*x^4 - 324*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} - 36 x^{34} + 594 x^{32} - 5952 x^{30} + 40455 x^{28} - 197316 x^{26} + 712530 x^{24} - 1937520 x^{22} + 3996135 x^{20} - 6249100 x^{18} + 7354710 x^{16} - 6418656 x^{14} + 4056234 x^{12} - 1790712 x^{10} + 523260 x^{8} - 93024 x^{6} + 8721 x^{4} - 324 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[36, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(41216642617644769738384985747906299013992369570201489573102485504=2^{72}\cdot 3^{90}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $62.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(216=2^{3}\cdot 3^{3}\)
Dirichlet character group:    $\lbrace$$\chi_{216}(1,·)$, $\chi_{216}(131,·)$, $\chi_{216}(133,·)$, $\chi_{216}(11,·)$, $\chi_{216}(13,·)$, $\chi_{216}(143,·)$, $\chi_{216}(145,·)$, $\chi_{216}(23,·)$, $\chi_{216}(25,·)$, $\chi_{216}(155,·)$, $\chi_{216}(157,·)$, $\chi_{216}(35,·)$, $\chi_{216}(37,·)$, $\chi_{216}(167,·)$, $\chi_{216}(169,·)$, $\chi_{216}(47,·)$, $\chi_{216}(49,·)$, $\chi_{216}(179,·)$, $\chi_{216}(181,·)$, $\chi_{216}(59,·)$, $\chi_{216}(61,·)$, $\chi_{216}(191,·)$, $\chi_{216}(193,·)$, $\chi_{216}(71,·)$, $\chi_{216}(73,·)$, $\chi_{216}(203,·)$, $\chi_{216}(205,·)$, $\chi_{216}(83,·)$, $\chi_{216}(85,·)$, $\chi_{216}(215,·)$, $\chi_{216}(95,·)$, $\chi_{216}(97,·)$, $\chi_{216}(107,·)$, $\chi_{216}(109,·)$, $\chi_{216}(119,·)$, $\chi_{216}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $35$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 682049432255791000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{2}, \sqrt{3})\), 6.6.3359232.1, 6.6.10077696.1, \(\Q(\zeta_{36})^+\), \(\Q(\zeta_{27})^+\), \(\Q(\zeta_{72})^+\), 18.18.132173713091594538512566714368.1, 18.18.396521139274783615537700143104.1, \(\Q(\zeta_{108})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed