Normalized defining polynomial
\( x^{36} - x^{35} - 91 x^{34} + 88 x^{33} + 3610 x^{32} - 3346 x^{31} - 82344 x^{30} + 72306 x^{29} + 1201840 x^{28} - 984922 x^{27} - 11849973 x^{26} + 8895207 x^{25} + 81470952 x^{24} - 54785331 x^{23} - 398471838 x^{22} + 234115845 x^{21} + 1403401302 x^{20} - 701053767 x^{19} - 3577294997 x^{18} + 1476195159 x^{17} + 6583639836 x^{16} - 2182363097 x^{15} - 8653274500 x^{14} + 2258507601 x^{13} + 7953185526 x^{12} - 1642297558 x^{11} - 4939927529 x^{10} + 855286083 x^{9} + 1967167029 x^{8} - 323901451 x^{7} - 461721752 x^{6} + 82956251 x^{5} + 54837496 x^{4} - 10879867 x^{3} - 2246720 x^{2} + 322424 x + 42979 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{1901} a^{27} + \frac{633}{1901} a^{26} - \frac{80}{1901} a^{25} + \frac{687}{1901} a^{24} - \frac{49}{1901} a^{23} - \frac{574}{1901} a^{22} - \frac{740}{1901} a^{21} + \frac{68}{1901} a^{20} - \frac{648}{1901} a^{19} + \frac{450}{1901} a^{18} + \frac{174}{1901} a^{17} + \frac{740}{1901} a^{16} - \frac{166}{1901} a^{15} + \frac{315}{1901} a^{14} + \frac{184}{1901} a^{13} + \frac{39}{1901} a^{12} + \frac{343}{1901} a^{11} - \frac{48}{1901} a^{10} + \frac{382}{1901} a^{9} + \frac{541}{1901} a^{8} - \frac{227}{1901} a^{7} - \frac{635}{1901} a^{6} - \frac{668}{1901} a^{5} + \frac{81}{1901} a^{4} - \frac{406}{1901} a^{3} - \frac{383}{1901} a^{2} - \frac{866}{1901} a + \frac{728}{1901}$, $\frac{1}{1901} a^{28} + \frac{342}{1901} a^{26} + \frac{409}{1901} a^{24} + \frac{27}{1901} a^{23} - \frac{489}{1901} a^{22} + \frac{842}{1901} a^{21} + \frac{31}{1901} a^{20} + \frac{18}{1901} a^{19} + \frac{474}{1901} a^{18} + \frac{856}{1901} a^{17} - \frac{940}{1901} a^{16} + \frac{838}{1901} a^{15} + \frac{394}{1901} a^{14} - \frac{472}{1901} a^{13} + \frac{369}{1901} a^{12} - \frac{453}{1901} a^{11} + \frac{350}{1901} a^{10} + \frac{162}{1901} a^{9} - \frac{500}{1901} a^{8} + \frac{481}{1901} a^{7} + \frac{176}{1901} a^{6} + \frac{903}{1901} a^{5} - \frac{352}{1901} a^{4} - \frac{20}{1901} a^{3} + \frac{146}{1901} a^{2} - \frac{483}{1901} a - \frac{782}{1901}$, $\frac{1}{1901} a^{29} + \frac{228}{1901} a^{26} - \frac{746}{1901} a^{25} + \frac{797}{1901} a^{24} - \frac{840}{1901} a^{23} - \frac{554}{1901} a^{22} + \frac{278}{1901} a^{21} - \frac{426}{1901} a^{20} - \frac{327}{1901} a^{19} + \frac{937}{1901} a^{18} + \frac{384}{1901} a^{17} + \frac{591}{1901} a^{16} + \frac{136}{1901} a^{15} + \frac{155}{1901} a^{14} + \frac{174}{1901} a^{13} - \frac{484}{1901} a^{12} + \frac{906}{1901} a^{11} - \frac{531}{1901} a^{10} + \frac{25}{1901} a^{9} - \frac{144}{1901} a^{8} - \frac{131}{1901} a^{7} - \frac{542}{1901} a^{6} - \frac{16}{1901} a^{5} + \frac{793}{1901} a^{4} + \frac{225}{1901} a^{3} - \frac{666}{1901} a^{2} + \frac{735}{1901} a + \frac{55}{1901}$, $\frac{1}{1901} a^{30} - \frac{594}{1901} a^{26} + \frac{27}{1901} a^{25} + \frac{307}{1901} a^{24} - \frac{788}{1901} a^{23} - \frac{19}{1901} a^{22} - \frac{895}{1901} a^{21} - \frac{623}{1901} a^{20} + \frac{403}{1901} a^{19} + \frac{438}{1901} a^{18} + \frac{840}{1901} a^{17} + \frac{605}{1901} a^{16} - \frac{17}{1901} a^{15} + \frac{592}{1901} a^{14} - \frac{614}{1901} a^{13} - \frac{382}{1901} a^{12} - \frac{794}{1901} a^{11} - \frac{437}{1901} a^{10} + \frac{206}{1901} a^{9} + \frac{86}{1901} a^{8} - \frac{113}{1901} a^{7} + \frac{288}{1901} a^{6} - \frac{884}{1901} a^{5} + \frac{767}{1901} a^{4} + \frac{654}{1901} a^{3} + \frac{613}{1901} a^{2} - \frac{201}{1901} a - \frac{597}{1901}$, $\frac{1}{1901} a^{31} - \frac{369}{1901} a^{26} + \frac{312}{1901} a^{25} + \frac{476}{1901} a^{24} - \frac{610}{1901} a^{23} + \frac{329}{1901} a^{22} + \frac{849}{1901} a^{21} + \frac{874}{1901} a^{20} - \frac{472}{1901} a^{19} + \frac{99}{1901} a^{18} - \frac{594}{1901} a^{17} + \frac{412}{1901} a^{16} + \frac{840}{1901} a^{15} + \frac{198}{1901} a^{14} + \frac{557}{1901} a^{13} - \frac{440}{1901} a^{12} - \frac{102}{1901} a^{11} + \frac{209}{1901} a^{10} + \frac{775}{1901} a^{9} - \frac{28}{1901} a^{8} + \frac{421}{1901} a^{7} + \frac{225}{1901} a^{6} - \frac{617}{1901} a^{5} - \frac{658}{1901} a^{4} + \frac{876}{1901} a^{3} + \frac{417}{1901} a^{2} + \frac{170}{1901} a + \frac{905}{1901}$, $\frac{1}{1901} a^{32} + \frac{66}{1901} a^{26} - \frac{529}{1901} a^{25} + \frac{60}{1901} a^{24} - \frac{643}{1901} a^{23} + \frac{54}{1901} a^{22} - \frac{343}{1901} a^{21} - \frac{93}{1901} a^{20} + \frac{513}{1901} a^{19} + \frac{69}{1901} a^{18} - \frac{16}{1901} a^{17} + \frac{156}{1901} a^{16} - \frac{224}{1901} a^{15} + \frac{831}{1901} a^{14} + \frac{921}{1901} a^{13} - \frac{919}{1901} a^{12} - \frac{591}{1901} a^{11} + \frac{172}{1901} a^{10} + \frac{256}{1901} a^{9} + \frac{445}{1901} a^{8} + \frac{106}{1901} a^{7} + \frac{792}{1901} a^{6} - \frac{20}{1901} a^{5} + \frac{349}{1901} a^{4} + \frac{782}{1901} a^{3} - \frac{483}{1901} a^{2} + \frac{719}{1901} a + \frac{591}{1901}$, $\frac{1}{363091} a^{33} - \frac{82}{363091} a^{32} + \frac{87}{363091} a^{31} - \frac{80}{363091} a^{30} + \frac{15}{363091} a^{29} + \frac{85}{363091} a^{28} - \frac{83}{363091} a^{27} + \frac{2778}{363091} a^{26} - \frac{22096}{363091} a^{25} - \frac{50057}{363091} a^{24} - \frac{75225}{363091} a^{23} - \frac{113869}{363091} a^{22} + \frac{180802}{363091} a^{21} - \frac{18643}{363091} a^{20} + \frac{150867}{363091} a^{19} + \frac{141492}{363091} a^{18} + \frac{47343}{363091} a^{17} + \frac{180937}{363091} a^{16} + \frac{104197}{363091} a^{15} + \frac{45506}{363091} a^{14} - \frac{9570}{363091} a^{13} + \frac{136668}{363091} a^{12} - \frac{107713}{363091} a^{11} - \frac{32521}{363091} a^{10} - \frac{139742}{363091} a^{9} + \frac{121785}{363091} a^{8} + \frac{38272}{363091} a^{7} + \frac{177492}{363091} a^{6} - \frac{4528}{363091} a^{5} + \frac{17366}{363091} a^{4} - \frac{136329}{363091} a^{3} - \frac{108752}{363091} a^{2} - \frac{110989}{363091} a - \frac{90381}{363091}$, $\frac{1}{363091} a^{34} + \frac{48}{363091} a^{32} - \frac{13}{363091} a^{31} - \frac{51}{363091} a^{30} - \frac{22}{363091} a^{29} + \frac{11}{363091} a^{28} - \frac{17}{363091} a^{27} + \frac{5914}{363091} a^{26} + \frac{147391}{363091} a^{25} - \frac{98802}{363091} a^{24} - \frac{116648}{363091} a^{23} - \frac{2781}{363091} a^{22} - \frac{76172}{363091} a^{21} + \frac{26182}{363091} a^{20} + \frac{2086}{363091} a^{19} - \frac{70264}{363091} a^{18} - \frac{80491}{363091} a^{17} - \frac{136891}{363091} a^{16} - \frac{117839}{363091} a^{15} - \frac{97123}{363091} a^{14} - \frac{116328}{363091} a^{13} - \frac{143388}{363091} a^{12} - \frac{174487}{363091} a^{11} + \frac{127296}{363091} a^{10} + \frac{54372}{363091} a^{9} - \frac{50608}{363091} a^{8} - \frac{96419}{363091} a^{7} + \frac{26749}{363091} a^{6} + \frac{157759}{363091} a^{5} + \frac{50003}{363091} a^{4} + \frac{8010}{363091} a^{3} - \frac{165107}{363091} a^{2} - \frac{38759}{363091} a - \frac{63090}{363091}$, $\frac{1}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{35} + \frac{332406546895359587056202944795211633796797338950789844085360172324436867791004390}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{34} + \frac{423658127194643906789514234152740340563252722559667448117801691588731914959461775}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{33} + \frac{85466862563593168019131174573356022969192633685475588248381248200087997996236750250}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{32} - \frac{6623588713078673900771244507501019458678536239061078027209997897820434210304771280}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{31} - \frac{58871183784064496856095742433662275298940745614759436178722679897117007770252242933}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{30} + \frac{42906757128466819771729271580032171801740527003282349096097177886235575542916078216}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{29} + \frac{24690217477860615447531306251882345560430767090151173313375278528927813468852643773}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{28} - \frac{7758965237306785369836708306713943137531004268538432691649470243137149236137402248}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{27} - \frac{35642174192901344416056360958038529115445498247632429648395275298569617281908170339313}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{26} - \frac{4080701825336305045212645051037242948782205714787255621057352317078226181894267406654}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{25} - \frac{82556576856810572439170262840464790846543922625748140925043153839017284829954143798440}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{24} + \frac{157630083249143668369839965695489016552496718941983874389812035669491000820539775220758}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{23} - \frac{90611465941644242517470956298115040145991160983820470589000782037923994445806742489871}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{22} - \frac{147057891861947255030175920791960564329015633694976852895101729457863538507545877090193}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{21} - \frac{207088700020335890504066268869250809948635812045527134395800110639874231084591229615385}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{20} - \frac{119807840414103063068319063368289000599609817282495016590632832746888091944164443577492}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{19} + \frac{47759106962741132150239653706610671582169482395573647434873059886817812508024730704741}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{18} - \frac{18213660001299063170649537611669927432522371193177020536908322339430849793220992044817}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{17} + \frac{23643202317683567863271926217367854333844964598864361135389780117151804630462032083745}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{16} + \frac{159740854172238636801416362235145152782255635421547615050614119233291749455237668554789}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{15} + \frac{124622540665698208371721681994404446952613618938013427545748357609415888425216381794375}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{14} + \frac{46646105540070416650251334337287304109489899860701215535858054995057620439803835156617}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{13} + \frac{153420465959506950135190152702739563834794877523091192423183951816130662045311258724379}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{12} - \frac{10748941369767594232215429844177738304781593842480941659298796646521559497869737975913}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{11} - \frac{224926167517459685331153721572473165231128508265921757211202911277981926575671379097730}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{10} - \frac{218903060082661981726004176519450634565293854513368300176884608360967682787262974762781}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{9} - \frac{41442223368890536705159633207870289925543290093779996915440145568018551383310449707798}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{8} - \frac{156106478606524490163924842568600819584760273597656198144397363545791621477490487682708}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{7} + \frac{52200417779231091164544705811433853181971326851509685295930693733961817785766738834954}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{6} + \frac{91781199374991509151609213183283185656825703970044568022936781969302388454560716527139}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{5} + \frac{130320392259220844141867641868399808126779307859196827372688354803513868477902952750507}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{4} + \frac{145102894356154083265903323088208141760875498307144971817090635436048060087497358928731}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{3} - \frac{145756969446626643491156239155171506860071292414864760122013843800742607353802703288649}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a^{2} + \frac{118211476248047691057153343795895937458499329123287123199942958192752998507581147918848}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131} a + \frac{164148978458600023587708817077624711200779101716025405513064042639751317029098886856477}{458021124744186876348154712294408718736845883692133859769654569503637448365188128771131}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20835202759585965000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.361.1, 4.4.793117.1, 6.6.286315237.1, \(\Q(\zeta_{19})^+\), 12.12.65016888286672160858773.1, 18.18.3058776789325072365774692364013.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $36$ | $18^{2}$ | $36$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{9}$ | $36$ | $18^{2}$ | $36$ | $18^{2}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||