Properties

Label 36.36.2987052991...6677.1
Degree $36$
Signature $[36, 0]$
Discriminant $3^{18}\cdot 37^{35}$
Root discriminant $57.97$
Ramified primes $3, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 36, -36, -2073, 2073, 33780, -33780, -253044, 253044, 1061566, -1061566, -2786656, 2786656, 4909788, -4909788, -6085132, 6085132, 5475703, -5475703, -3651272, 3651272, 1824913, -1824913, -685907, 685907, 192880, -192880, -39961, 39961, 5919, -5919, -593, 593, 36, -36, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 - 36*x^34 + 36*x^33 + 593*x^32 - 593*x^31 - 5919*x^30 + 5919*x^29 + 39961*x^28 - 39961*x^27 - 192880*x^26 + 192880*x^25 + 685907*x^24 - 685907*x^23 - 1824913*x^22 + 1824913*x^21 + 3651272*x^20 - 3651272*x^19 - 5475703*x^18 + 5475703*x^17 + 6085132*x^16 - 6085132*x^15 - 4909788*x^14 + 4909788*x^13 + 2786656*x^12 - 2786656*x^11 - 1061566*x^10 + 1061566*x^9 + 253044*x^8 - 253044*x^7 - 33780*x^6 + 33780*x^5 + 2073*x^4 - 2073*x^3 - 36*x^2 + 36*x + 1)
 
gp: K = bnfinit(x^36 - x^35 - 36*x^34 + 36*x^33 + 593*x^32 - 593*x^31 - 5919*x^30 + 5919*x^29 + 39961*x^28 - 39961*x^27 - 192880*x^26 + 192880*x^25 + 685907*x^24 - 685907*x^23 - 1824913*x^22 + 1824913*x^21 + 3651272*x^20 - 3651272*x^19 - 5475703*x^18 + 5475703*x^17 + 6085132*x^16 - 6085132*x^15 - 4909788*x^14 + 4909788*x^13 + 2786656*x^12 - 2786656*x^11 - 1061566*x^10 + 1061566*x^9 + 253044*x^8 - 253044*x^7 - 33780*x^6 + 33780*x^5 + 2073*x^4 - 2073*x^3 - 36*x^2 + 36*x + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{35} - 36 x^{34} + 36 x^{33} + 593 x^{32} - 593 x^{31} - 5919 x^{30} + 5919 x^{29} + 39961 x^{28} - 39961 x^{27} - 192880 x^{26} + 192880 x^{25} + 685907 x^{24} - 685907 x^{23} - 1824913 x^{22} + 1824913 x^{21} + 3651272 x^{20} - 3651272 x^{19} - 5475703 x^{18} + 5475703 x^{17} + 6085132 x^{16} - 6085132 x^{15} - 4909788 x^{14} + 4909788 x^{13} + 2786656 x^{12} - 2786656 x^{11} - 1061566 x^{10} + 1061566 x^{9} + 253044 x^{8} - 253044 x^{7} - 33780 x^{6} + 33780 x^{5} + 2073 x^{4} - 2073 x^{3} - 36 x^{2} + 36 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[36, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2987052991985699215206951151365900403178222386352058024870316677=3^{18}\cdot 37^{35}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(111=3\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{111}(1,·)$, $\chi_{111}(2,·)$, $\chi_{111}(4,·)$, $\chi_{111}(5,·)$, $\chi_{111}(7,·)$, $\chi_{111}(8,·)$, $\chi_{111}(10,·)$, $\chi_{111}(14,·)$, $\chi_{111}(16,·)$, $\chi_{111}(17,·)$, $\chi_{111}(20,·)$, $\chi_{111}(23,·)$, $\chi_{111}(25,·)$, $\chi_{111}(28,·)$, $\chi_{111}(29,·)$, $\chi_{111}(32,·)$, $\chi_{111}(34,·)$, $\chi_{111}(35,·)$, $\chi_{111}(40,·)$, $\chi_{111}(46,·)$, $\chi_{111}(49,·)$, $\chi_{111}(50,·)$, $\chi_{111}(56,·)$, $\chi_{111}(58,·)$, $\chi_{111}(59,·)$, $\chi_{111}(64,·)$, $\chi_{111}(67,·)$, $\chi_{111}(68,·)$, $\chi_{111}(70,·)$, $\chi_{111}(73,·)$, $\chi_{111}(80,·)$, $\chi_{111}(85,·)$, $\chi_{111}(89,·)$, $\chi_{111}(92,·)$, $\chi_{111}(98,·)$, $\chi_{111}(100,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $35$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 181157165602858830000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{36}$ (as 36T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{37}) \), 3.3.1369.1, 4.4.455877.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.12.129701946277226641077.1, \(\Q(\zeta_{37})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $36$ R $36$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ $36$ $36$ $36$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{9}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ $18^{2}$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
37Data not computed