Normalized defining polynomial
\( x^{36} - x^{35} - 36 x^{34} + 36 x^{33} + 593 x^{32} - 593 x^{31} - 5919 x^{30} + 5919 x^{29} + 39961 x^{28} - 39961 x^{27} - 192880 x^{26} + 192880 x^{25} + 685907 x^{24} - 685907 x^{23} - 1824913 x^{22} + 1824913 x^{21} + 3651272 x^{20} - 3651272 x^{19} - 5475703 x^{18} + 5475703 x^{17} + 6085132 x^{16} - 6085132 x^{15} - 4909788 x^{14} + 4909788 x^{13} + 2786656 x^{12} - 2786656 x^{11} - 1061566 x^{10} + 1061566 x^{9} + 253044 x^{8} - 253044 x^{7} - 33780 x^{6} + 33780 x^{5} + 2073 x^{4} - 2073 x^{3} - 36 x^{2} + 36 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181157165602858830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.1369.1, 4.4.455877.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.12.129701946277226641077.1, \(\Q(\zeta_{37})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $36$ | R | $36$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | $36$ | $36$ | $36$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | $18^{2}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||