# SageMath code for working with number field 36.36.240152953708250935530977810544721792914847414233751595020294189453125.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^36 - 5*x^35 - 61*x^34 + 341*x^33 + 1498*x^32 - 9923*x^31 - 18344*x^30 + 162163*x^29 + 100187*x^28 - 1651384*x^27 + 151385*x^26 + 11009448*x^25 - 6014336*x^24 - 49174374*x^23 + 42405508*x^22 + 148130790*x^21 - 162961903*x^20 - 299264731*x^19 + 387680446*x^18 + 399630129*x^17 - 587870429*x^16 - 346734395*x^15 + 566539690*x^14 + 194732689*x^13 - 340300799*x^12 - 73364329*x^11 + 122941569*x^10 + 19939192*x^9 - 25143775*x^8 - 3815281*x^7 + 2601760*x^6 + 414379*x^5 - 101999*x^4 - 16958*x^3 + 222*x^2 + 69*x + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^36 - 5*x^35 - 61*x^34 + 341*x^33 + 1498*x^32 - 9923*x^31 - 18344*x^30 + 162163*x^29 + 100187*x^28 - 1651384*x^27 + 151385*x^26 + 11009448*x^25 - 6014336*x^24 - 49174374*x^23 + 42405508*x^22 + 148130790*x^21 - 162961903*x^20 - 299264731*x^19 + 387680446*x^18 + 399630129*x^17 - 587870429*x^16 - 346734395*x^15 + 566539690*x^14 + 194732689*x^13 - 340300799*x^12 - 73364329*x^11 + 122941569*x^10 + 19939192*x^9 - 25143775*x^8 - 3815281*x^7 + 2601760*x^6 + 414379*x^5 - 101999*x^4 - 16958*x^3 + 222*x^2 + 69*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]