Normalized defining polynomial
\( x^{36} - 5 x^{35} - 61 x^{34} + 341 x^{33} + 1498 x^{32} - 9923 x^{31} - 18344 x^{30} + 162163 x^{29} + 100187 x^{28} - 1651384 x^{27} + 151385 x^{26} + 11009448 x^{25} - 6014336 x^{24} - 49174374 x^{23} + 42405508 x^{22} + 148130790 x^{21} - 162961903 x^{20} - 299264731 x^{19} + 387680446 x^{18} + 399630129 x^{17} - 587870429 x^{16} - 346734395 x^{15} + 566539690 x^{14} + 194732689 x^{13} - 340300799 x^{12} - 73364329 x^{11} + 122941569 x^{10} + 19939192 x^{9} - 25143775 x^{8} - 3815281 x^{7} + 2601760 x^{6} + 414379 x^{5} - 101999 x^{4} - 16958 x^{3} + 222 x^{2} + 69 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{151} a^{32} + \frac{40}{151} a^{31} + \frac{74}{151} a^{30} - \frac{2}{151} a^{29} - \frac{25}{151} a^{28} - \frac{10}{151} a^{27} - \frac{56}{151} a^{26} - \frac{1}{151} a^{25} - \frac{50}{151} a^{24} - \frac{3}{151} a^{23} - \frac{70}{151} a^{22} - \frac{53}{151} a^{21} - \frac{75}{151} a^{20} + \frac{44}{151} a^{19} - \frac{48}{151} a^{18} + \frac{75}{151} a^{17} + \frac{15}{151} a^{16} + \frac{72}{151} a^{15} + \frac{28}{151} a^{14} - \frac{64}{151} a^{13} + \frac{69}{151} a^{12} + \frac{51}{151} a^{11} - \frac{52}{151} a^{10} + \frac{14}{151} a^{9} - \frac{10}{151} a^{8} + \frac{48}{151} a^{7} - \frac{1}{151} a^{6} - \frac{55}{151} a^{5} + \frac{29}{151} a^{4} - \frac{33}{151} a^{3} + \frac{15}{151} a^{2} + \frac{38}{151} a + \frac{15}{151}$, $\frac{1}{63269} a^{33} + \frac{107}{63269} a^{32} + \frac{6831}{63269} a^{31} - \frac{28113}{63269} a^{30} + \frac{31249}{63269} a^{29} + \frac{12660}{63269} a^{28} + \frac{22075}{63269} a^{27} - \frac{11605}{63269} a^{26} + \frac{14681}{63269} a^{25} + \frac{13559}{63269} a^{24} - \frac{24280}{63269} a^{23} - \frac{13350}{63269} a^{22} + \frac{16608}{63269} a^{21} - \frac{22648}{63269} a^{20} + \frac{1692}{63269} a^{19} - \frac{5557}{63269} a^{18} + \frac{11684}{63269} a^{17} - \frac{16288}{63269} a^{16} - \frac{17345}{63269} a^{15} + \frac{87}{419} a^{14} + \frac{3633}{63269} a^{13} - \frac{18731}{63269} a^{12} + \frac{25411}{63269} a^{11} - \frac{14191}{63269} a^{10} + \frac{1230}{63269} a^{9} - \frac{6511}{63269} a^{8} + \frac{7594}{63269} a^{7} + \frac{6220}{63269} a^{6} + \frac{30017}{63269} a^{5} + \frac{18520}{63269} a^{4} + \frac{30722}{63269} a^{3} + \frac{24599}{63269} a^{2} + \frac{18114}{63269} a - \frac{22702}{63269}$, $\frac{1}{63269} a^{34} - \frac{9}{63269} a^{32} - \frac{5249}{63269} a^{31} + \frac{27149}{63269} a^{30} + \frac{13056}{63269} a^{29} + \frac{7417}{63269} a^{28} - \frac{15498}{63269} a^{27} - \frac{13992}{63269} a^{26} + \frac{19808}{63269} a^{25} + \frac{2720}{63269} a^{24} - \frac{23246}{63269} a^{23} - \frac{16414}{63269} a^{22} - \frac{19373}{63269} a^{21} - \frac{8524}{63269} a^{20} + \frac{16195}{63269} a^{19} + \frac{5437}{63269} a^{18} + \frac{28234}{63269} a^{17} + \frac{23074}{63269} a^{16} - \frac{13515}{63269} a^{15} - \frac{7594}{63269} a^{14} - \frac{6479}{63269} a^{13} + \frac{6696}{63269} a^{12} - \frac{30618}{63269} a^{11} + \frac{14619}{63269} a^{10} - \frac{10326}{63269} a^{9} + \frac{25491}{63269} a^{8} - \frac{15685}{63269} a^{7} - \frac{7442}{63269} a^{6} - \frac{30268}{63269} a^{5} + \frac{17544}{63269} a^{4} + \frac{1774}{63269} a^{3} - \frac{14084}{63269} a^{2} - \frac{14226}{63269} a + \frac{30758}{63269}$, $\frac{1}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{35} + \frac{3261622492466089923685877849729112961615351669888648917275766618078366202470016158707964}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{34} - \frac{8961131179382633425624569877380126598119994251643759399022395999325699121281125148765888}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{33} - \frac{3727740399308115998749303697840899899681791560772144834381058714727910345043439111708932827}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{32} - \frac{695723327041299766672413919408177460773589906541939711267021931616225446668661214762469893670}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{31} + \frac{259550278154042273956793048441211692161104415243241914512463944793595966378152858656081059767}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{30} - \frac{282467158905066978742429229535639998055581902185710842560435664270710862184592365936022434517}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{29} - \frac{323256252866562588838792285766439452971981892332257335553324053364004882973038596021841690564}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{28} + \frac{95060121229254764471381288143342878094326884914455122099387924235143242415778331926082185416}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{27} - \frac{180086829838380812500679476144918083530870598007351616820579793358476961140981447370996118717}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{26} + \frac{147154506866074389913309986616327838232507297335341998603020673263162699575636802892694326069}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{25} - \frac{547760950505441303561125810206462962642616680794606877508908482985980365296915820371417411020}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{24} + \frac{379112066503719704131742451561719927100706493391858727030146183048119840190341855120557281861}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{23} + \frac{503499157461340233731882865973449616091014145817476444257304570908855143755731019891182342382}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{22} - \frac{488705528811071397997498938121990120483400813845502254343391051462250868904659758705217722387}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{21} + \frac{415295423501669537934793976502406532537314743306874561522394108378729263777162514879964529573}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{20} - \frac{329403173580951299288685606196630944481917196217751196967400897891858533896605119252151936558}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{19} - \frac{508391476820796953587475338040171752141763407706866676151935640271992419377354996466493096926}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{18} - \frac{602442790263569338680924532668245637945103467003037577436215718869462679164921509179262397880}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{17} - \frac{6209182728129143145533677958223151571112688798712606362325162939895851751596840175673800811}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{16} - \frac{380890937819508301251149704496268345284670212537683604689083712504391694059777380722415305207}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{15} - \frac{150256656408744530036129937091572204435359071791239733205251103526215499931127446795035287931}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{14} - \frac{554290886591868738763953277528471692007460348620244800119085558720650265311808746025143858315}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{13} - \frac{279030256665687335307665671370519602162357580478817939783794976586734606353021258467937951391}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{12} + \frac{207586424703334384326227480975930938710513400525766275450585279105475482539045286582284079289}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{11} - \frac{215844150237611618116930226139256336514681832760126080975079447084379530751253236004188573392}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{10} - \frac{716031164150746629810474864008507385777109944138116065413150334665852737499320781616975457799}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{9} - \frac{554300624270797566290764879597946322259432509042137487333160657460342553475786677814261745284}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{8} - \frac{253682206639636070459257504562889866589008248971192519456903732555495132141146895693298574766}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{7} - \frac{624681591222014819260753569023677026783953311705540923635116284569665956109882853667846048785}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{6} - \frac{283298092185772495710723162623992402796105263668632264815056653264811312745328627482514693109}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{5} - \frac{7611472206142621892646248199377569603338561234536925978658405207077421073344795917052946512}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{4} - \frac{722821451930318996288015414555532251532684630874015022358868064361411039578253794447722829127}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{3} - \frac{434039154860709000890822095956427478425138260946092667973659861678486996659486801516217959234}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559} a^{2} + \frac{2043513162814702739783030939612038585899341105656616008396033907932390008002608287136345130}{9793391636691934353634073821667541320658107344913533826830176503616621922864064159314890209} a - \frac{232178289123032329393564069205808889282159023015973161596655592975406520011949192090824514327}{1478802137140482087398745147071798739419374209081943607851356652046109910352473688056548421559}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57472811629290726000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.361.1, \(\Q(\zeta_{15})^+\), 6.6.16290125.1, \(\Q(\zeta_{19})^+\), 12.12.24181674720486328125.1, 18.18.563362135874260093126953125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $36$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $36$ | $36$ | R | $36$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{9}$ | $18^{2}$ | $36$ | $36$ | $36$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||