Normalized defining polynomial
\( x^{36} - 54 x^{34} + 1269 x^{32} - 17118 x^{30} + 147510 x^{28} - 857304 x^{26} + 3468195 x^{24} - 9962190 x^{22} + 20569950 x^{20} - 30715038 x^{18} + 33159726 x^{16} - 25700409 x^{14} + 14084001 x^{12} - 5318379 x^{10} + 1328724 x^{8} - 206064 x^{6} + 17901 x^{4} - 729 x^{2} + 9 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18}$, $\frac{1}{3} a^{19}$, $\frac{1}{3} a^{20}$, $\frac{1}{3} a^{21}$, $\frac{1}{3} a^{22}$, $\frac{1}{3} a^{23}$, $\frac{1}{3} a^{24}$, $\frac{1}{3} a^{25}$, $\frac{1}{3} a^{26}$, $\frac{1}{3} a^{27}$, $\frac{1}{3} a^{28}$, $\frac{1}{3} a^{29}$, $\frac{1}{3} a^{30}$, $\frac{1}{3} a^{31}$, $\frac{1}{140937} a^{32} + \frac{7202}{46979} a^{30} - \frac{559}{46979} a^{28} + \frac{13849}{140937} a^{26} + \frac{1207}{140937} a^{24} + \frac{3307}{140937} a^{22} - \frac{7394}{140937} a^{20} - \frac{19928}{140937} a^{18} - \frac{5083}{46979} a^{16} - \frac{10693}{46979} a^{14} - \frac{12868}{46979} a^{12} - \frac{21211}{46979} a^{10} + \frac{22458}{46979} a^{8} + \frac{21236}{46979} a^{6} - \frac{23438}{46979} a^{4} - \frac{1360}{46979} a^{2} - \frac{22984}{46979}$, $\frac{1}{140937} a^{33} + \frac{7202}{46979} a^{31} - \frac{559}{46979} a^{29} + \frac{13849}{140937} a^{27} + \frac{1207}{140937} a^{25} + \frac{3307}{140937} a^{23} - \frac{7394}{140937} a^{21} - \frac{19928}{140937} a^{19} - \frac{5083}{46979} a^{17} - \frac{10693}{46979} a^{15} - \frac{12868}{46979} a^{13} - \frac{21211}{46979} a^{11} + \frac{22458}{46979} a^{9} + \frac{21236}{46979} a^{7} - \frac{23438}{46979} a^{5} - \frac{1360}{46979} a^{3} - \frac{22984}{46979} a$, $\frac{1}{1950373313128716520625853} a^{34} + \frac{3916204508399265346}{1950373313128716520625853} a^{32} - \frac{84693961811878515263289}{650124437709572173541951} a^{30} + \frac{2433754794560254880590}{650124437709572173541951} a^{28} + \frac{79094222736092254160482}{650124437709572173541951} a^{26} - \frac{89344677118432713887382}{650124437709572173541951} a^{24} - \frac{54614399591277962382928}{1950373313128716520625853} a^{22} - \frac{193192510789772788122760}{1950373313128716520625853} a^{20} - \frac{71228309448387769920533}{650124437709572173541951} a^{18} - \frac{44127168558631452398728}{650124437709572173541951} a^{16} - \frac{279944454330365720119186}{650124437709572173541951} a^{14} + \frac{43144318813691081409297}{650124437709572173541951} a^{12} + \frac{6954469836539135511981}{650124437709572173541951} a^{10} - \frac{177650558965933283931843}{650124437709572173541951} a^{8} - \frac{231936919520910243747759}{650124437709572173541951} a^{6} + \frac{62534302822989068806072}{650124437709572173541951} a^{4} + \frac{125671291535299703970597}{650124437709572173541951} a^{2} - \frac{176282377497728609484305}{650124437709572173541951}$, $\frac{1}{1950373313128716520625853} a^{35} + \frac{3916204508399265346}{1950373313128716520625853} a^{33} - \frac{84693961811878515263289}{650124437709572173541951} a^{31} + \frac{2433754794560254880590}{650124437709572173541951} a^{29} + \frac{79094222736092254160482}{650124437709572173541951} a^{27} - \frac{89344677118432713887382}{650124437709572173541951} a^{25} - \frac{54614399591277962382928}{1950373313128716520625853} a^{23} - \frac{193192510789772788122760}{1950373313128716520625853} a^{21} - \frac{71228309448387769920533}{650124437709572173541951} a^{19} - \frac{44127168558631452398728}{650124437709572173541951} a^{17} - \frac{279944454330365720119186}{650124437709572173541951} a^{15} + \frac{43144318813691081409297}{650124437709572173541951} a^{13} + \frac{6954469836539135511981}{650124437709572173541951} a^{11} - \frac{177650558965933283931843}{650124437709572173541951} a^{9} - \frac{231936919520910243747759}{650124437709572173541951} a^{7} + \frac{62534302822989068806072}{650124437709572173541951} a^{5} + \frac{125671291535299703970597}{650124437709572173541951} a^{3} - \frac{176282377497728609484305}{650124437709572173541951} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6642656411972985000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $18^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||