# SageMath code for working with number field 36.36.22878331820822683097801634238807198405761132789439230168181892642289.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^36 - 71*x^34 - 8*x^33 + 2203*x^32 + 458*x^31 - 39419*x^30 - 11171*x^29 + 452485*x^28 + 152549*x^27 - 3511489*x^26 - 1291483*x^25 + 18942377*x^24 + 7104729*x^23 - 72013209*x^22 - 25930789*x^21 + 193701628*x^20 + 63027785*x^19 - 366929496*x^18 - 100868241*x^17 + 482872954*x^16 + 103172083*x^15 - 430753452*x^14 - 63559658*x^13 + 250492399*x^12 + 20933394*x^11 - 89499925*x^10 - 2758730*x^9 + 18093496*x^8 - 12482*x^7 - 1913861*x^6 + 35416*x^5 + 94085*x^4 - 2330*x^3 - 1563*x^2 + 15*x + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^36 - 71*x^34 - 8*x^33 + 2203*x^32 + 458*x^31 - 39419*x^30 - 11171*x^29 + 452485*x^28 + 152549*x^27 - 3511489*x^26 - 1291483*x^25 + 18942377*x^24 + 7104729*x^23 - 72013209*x^22 - 25930789*x^21 + 193701628*x^20 + 63027785*x^19 - 366929496*x^18 - 100868241*x^17 + 482872954*x^16 + 103172083*x^15 - 430753452*x^14 - 63559658*x^13 + 250492399*x^12 + 20933394*x^11 - 89499925*x^10 - 2758730*x^9 + 18093496*x^8 - 12482*x^7 - 1913861*x^6 + 35416*x^5 + 94085*x^4 - 2330*x^3 - 1563*x^2 + 15*x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]