Properties

Label 36.36.2237755068...3125.1
Degree $36$
Signature $[36, 0]$
Discriminant $5^{27}\cdot 19^{34}$
Root discriminant $53.94$
Ramified primes $5, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 20, -340, -605, 9885, 10534, -108458, -100432, 601194, 503479, -2000649, -1498899, 4404908, 2906674, -6803518, -3896996, 7649116, 3752139, -6408680, -2656542, 4057888, 1401346, -1954471, -553125, 715754, 162629, -197720, -35091, 40485, 5394, -5953, -559, 594, 35, -36, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 - 36*x^34 + 35*x^33 + 594*x^32 - 559*x^31 - 5953*x^30 + 5394*x^29 + 40485*x^28 - 35091*x^27 - 197720*x^26 + 162629*x^25 + 715754*x^24 - 553125*x^23 - 1954471*x^22 + 1401346*x^21 + 4057888*x^20 - 2656542*x^19 - 6408680*x^18 + 3752139*x^17 + 7649116*x^16 - 3896996*x^15 - 6803518*x^14 + 2906674*x^13 + 4404908*x^12 - 1498899*x^11 - 2000649*x^10 + 503479*x^9 + 601194*x^8 - 100432*x^7 - 108458*x^6 + 10534*x^5 + 9885*x^4 - 605*x^3 - 340*x^2 + 20*x + 1)
 
gp: K = bnfinit(x^36 - x^35 - 36*x^34 + 35*x^33 + 594*x^32 - 559*x^31 - 5953*x^30 + 5394*x^29 + 40485*x^28 - 35091*x^27 - 197720*x^26 + 162629*x^25 + 715754*x^24 - 553125*x^23 - 1954471*x^22 + 1401346*x^21 + 4057888*x^20 - 2656542*x^19 - 6408680*x^18 + 3752139*x^17 + 7649116*x^16 - 3896996*x^15 - 6803518*x^14 + 2906674*x^13 + 4404908*x^12 - 1498899*x^11 - 2000649*x^10 + 503479*x^9 + 601194*x^8 - 100432*x^7 - 108458*x^6 + 10534*x^5 + 9885*x^4 - 605*x^3 - 340*x^2 + 20*x + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{35} - 36 x^{34} + 35 x^{33} + 594 x^{32} - 559 x^{31} - 5953 x^{30} + 5394 x^{29} + 40485 x^{28} - 35091 x^{27} - 197720 x^{26} + 162629 x^{25} + 715754 x^{24} - 553125 x^{23} - 1954471 x^{22} + 1401346 x^{21} + 4057888 x^{20} - 2656542 x^{19} - 6408680 x^{18} + 3752139 x^{17} + 7649116 x^{16} - 3896996 x^{15} - 6803518 x^{14} + 2906674 x^{13} + 4404908 x^{12} - 1498899 x^{11} - 2000649 x^{10} + 503479 x^{9} + 601194 x^{8} - 100432 x^{7} - 108458 x^{6} + 10534 x^{5} + 9885 x^{4} - 605 x^{3} - 340 x^{2} + 20 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[36, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(223775506846460533290697977531706040570972271263599395751953125=5^{27}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.94$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(95=5\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{95}(1,·)$, $\chi_{95}(2,·)$, $\chi_{95}(3,·)$, $\chi_{95}(4,·)$, $\chi_{95}(6,·)$, $\chi_{95}(8,·)$, $\chi_{95}(9,·)$, $\chi_{95}(11,·)$, $\chi_{95}(12,·)$, $\chi_{95}(13,·)$, $\chi_{95}(16,·)$, $\chi_{95}(18,·)$, $\chi_{95}(22,·)$, $\chi_{95}(24,·)$, $\chi_{95}(26,·)$, $\chi_{95}(27,·)$, $\chi_{95}(32,·)$, $\chi_{95}(33,·)$, $\chi_{95}(36,·)$, $\chi_{95}(37,·)$, $\chi_{95}(39,·)$, $\chi_{95}(44,·)$, $\chi_{95}(48,·)$, $\chi_{95}(49,·)$, $\chi_{95}(52,·)$, $\chi_{95}(53,·)$, $\chi_{95}(54,·)$, $\chi_{95}(61,·)$, $\chi_{95}(64,·)$, $\chi_{95}(66,·)$, $\chi_{95}(67,·)$, $\chi_{95}(72,·)$, $\chi_{95}(74,·)$, $\chi_{95}(78,·)$, $\chi_{95}(81,·)$, $\chi_{95}(88,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $35$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 58714175232406490000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{36}$ (as 36T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.361.1, 4.4.45125.1, 6.6.16290125.1, \(\Q(\zeta_{19})^+\), 12.12.11974738784767578125.1, 18.18.563362135874260093126953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $36$ $36$ R ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ $36$ $36$ R $36$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{9}$ $18^{2}$ $36$ $36$ $36$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
19Data not computed