Normalized defining polynomial
\( x^{36} - 76 x^{34} + 2546 x^{32} - 49704 x^{30} + 630800 x^{28} - 5506048 x^{26} + 34166712 x^{24} - 153873248 x^{22} + 509408848 x^{20} - 1247889600 x^{18} + 2263903200 x^{16} - 3025838464 x^{14} + 2943264768 x^{12} - 2040175616 x^{10} + 974896384 x^{8} - 304972800 x^{6} + 57390336 x^{4} - 5544960 x^{2} + 184832 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{304} a^{18}$, $\frac{1}{304} a^{19}$, $\frac{1}{608} a^{20}$, $\frac{1}{608} a^{21}$, $\frac{1}{608} a^{22}$, $\frac{1}{608} a^{23}$, $\frac{1}{1216} a^{24}$, $\frac{1}{1216} a^{25}$, $\frac{1}{1216} a^{26}$, $\frac{1}{1216} a^{27}$, $\frac{1}{2432} a^{28}$, $\frac{1}{2432} a^{29}$, $\frac{1}{274816} a^{30} + \frac{9}{274816} a^{28} + \frac{1}{68704} a^{26} - \frac{53}{137408} a^{24} + \frac{3}{34352} a^{22} + \frac{37}{68704} a^{20} + \frac{1}{1808} a^{18} + \frac{9}{1808} a^{16} - \frac{13}{226} a^{14} + \frac{33}{904} a^{12} - \frac{13}{113} a^{10} + \frac{1}{226} a^{8} - \frac{53}{226} a^{6} + \frac{53}{226} a^{4} + \frac{8}{113} a^{2} + \frac{31}{113}$, $\frac{1}{274816} a^{31} + \frac{9}{274816} a^{29} + \frac{1}{68704} a^{27} - \frac{53}{137408} a^{25} + \frac{3}{34352} a^{23} + \frac{37}{68704} a^{21} + \frac{1}{1808} a^{19} + \frac{9}{1808} a^{17} - \frac{13}{226} a^{15} + \frac{33}{904} a^{13} - \frac{13}{113} a^{11} + \frac{1}{226} a^{9} - \frac{53}{226} a^{7} + \frac{53}{226} a^{5} + \frac{8}{113} a^{3} + \frac{31}{113} a$, $\frac{1}{549632} a^{32} + \frac{9}{137408} a^{28} + \frac{21}{137408} a^{26} - \frac{1}{3616} a^{24} + \frac{3}{4294} a^{22} + \frac{11}{34352} a^{20} - \frac{9}{452} a^{16} - \frac{4}{113} a^{14} - \frac{31}{904} a^{12} + \frac{9}{452} a^{10} + \frac{51}{452} a^{8} + \frac{39}{226} a^{6} + \frac{26}{113} a^{4} + \frac{36}{113} a^{2} + \frac{30}{113}$, $\frac{1}{549632} a^{33} + \frac{9}{137408} a^{29} + \frac{21}{137408} a^{27} - \frac{1}{3616} a^{25} + \frac{3}{4294} a^{23} + \frac{11}{34352} a^{21} - \frac{9}{452} a^{17} - \frac{4}{113} a^{15} - \frac{31}{904} a^{13} + \frac{9}{452} a^{11} + \frac{51}{452} a^{9} + \frac{39}{226} a^{7} + \frac{26}{113} a^{5} + \frac{36}{113} a^{3} + \frac{30}{113} a$, $\frac{1}{339323332987860253952} a^{34} - \frac{14217559119613}{84830833246965063488} a^{32} - \frac{17787852072535}{169661666493930126976} a^{30} + \frac{3614511314850045}{84830833246965063488} a^{28} + \frac{12645366535069587}{42415416623482531744} a^{26} + \frac{12584017317739045}{42415416623482531744} a^{24} + \frac{3962521614519619}{5301927077935316468} a^{22} + \frac{2546079326769937}{42415416623482531744} a^{20} + \frac{3162316844394401}{5301927077935316468} a^{18} + \frac{5075619312631185}{558097587151085944} a^{16} + \frac{7435642064240857}{558097587151085944} a^{14} + \frac{27472035453660613}{558097587151085944} a^{12} + \frac{17617232076941885}{279048793575542972} a^{10} + \frac{32336573929162137}{279048793575542972} a^{8} + \frac{15238149087898669}{139524396787771486} a^{6} + \frac{3404210171901985}{69762198393885743} a^{4} - \frac{30482966091161973}{69762198393885743} a^{2} + \frac{13401713776841009}{69762198393885743}$, $\frac{1}{339323332987860253952} a^{35} - \frac{14217559119613}{84830833246965063488} a^{33} - \frac{17787852072535}{169661666493930126976} a^{31} + \frac{3614511314850045}{84830833246965063488} a^{29} + \frac{12645366535069587}{42415416623482531744} a^{27} + \frac{12584017317739045}{42415416623482531744} a^{25} + \frac{3962521614519619}{5301927077935316468} a^{23} + \frac{2546079326769937}{42415416623482531744} a^{21} + \frac{3162316844394401}{5301927077935316468} a^{19} + \frac{5075619312631185}{558097587151085944} a^{17} + \frac{7435642064240857}{558097587151085944} a^{15} + \frac{27472035453660613}{558097587151085944} a^{13} + \frac{17617232076941885}{279048793575542972} a^{11} + \frac{32336573929162137}{279048793575542972} a^{9} + \frac{15238149087898669}{139524396787771486} a^{7} + \frac{3404210171901985}{69762198393885743} a^{5} - \frac{30482966091161973}{69762198393885743} a^{3} + \frac{13401713776841009}{69762198393885743} a$
Class group and class number
Not computed
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.361.1, 4.4.739328.1, 6.6.66724352.1, \(\Q(\zeta_{19})^+\), 12.12.52665458133728799752192.1, 18.18.38713951190154487490850848768.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $36$ | $36$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | $36$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $36$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $36$ | $18^{2}$ | $36$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||