Properties

Label 36.36.1645508402...5257.1
Degree $36$
Signature $[36, 0]$
Discriminant $73^{35}$
Root discriminant $64.80$
Ramified prime $73$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 18, -171, -969, 4845, 15504, -54264, -116280, 319770, 497420, -1144066, -1352078, 2704156, 2496144, -4457400, -3268760, 5311735, 3124550, -4686825, -2220075, 3108105, 1184040, -1560780, -475020, 593775, 142506, -169911, -31465, 35960, 4960, -5456, -528, 561, 34, -35, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 - 35*x^34 + 34*x^33 + 561*x^32 - 528*x^31 - 5456*x^30 + 4960*x^29 + 35960*x^28 - 31465*x^27 - 169911*x^26 + 142506*x^25 + 593775*x^24 - 475020*x^23 - 1560780*x^22 + 1184040*x^21 + 3108105*x^20 - 2220075*x^19 - 4686825*x^18 + 3124550*x^17 + 5311735*x^16 - 3268760*x^15 - 4457400*x^14 + 2496144*x^13 + 2704156*x^12 - 1352078*x^11 - 1144066*x^10 + 497420*x^9 + 319770*x^8 - 116280*x^7 - 54264*x^6 + 15504*x^5 + 4845*x^4 - 969*x^3 - 171*x^2 + 18*x + 1)
 
gp: K = bnfinit(x^36 - x^35 - 35*x^34 + 34*x^33 + 561*x^32 - 528*x^31 - 5456*x^30 + 4960*x^29 + 35960*x^28 - 31465*x^27 - 169911*x^26 + 142506*x^25 + 593775*x^24 - 475020*x^23 - 1560780*x^22 + 1184040*x^21 + 3108105*x^20 - 2220075*x^19 - 4686825*x^18 + 3124550*x^17 + 5311735*x^16 - 3268760*x^15 - 4457400*x^14 + 2496144*x^13 + 2704156*x^12 - 1352078*x^11 - 1144066*x^10 + 497420*x^9 + 319770*x^8 - 116280*x^7 - 54264*x^6 + 15504*x^5 + 4845*x^4 - 969*x^3 - 171*x^2 + 18*x + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{35} - 35 x^{34} + 34 x^{33} + 561 x^{32} - 528 x^{31} - 5456 x^{30} + 4960 x^{29} + 35960 x^{28} - 31465 x^{27} - 169911 x^{26} + 142506 x^{25} + 593775 x^{24} - 475020 x^{23} - 1560780 x^{22} + 1184040 x^{21} + 3108105 x^{20} - 2220075 x^{19} - 4686825 x^{18} + 3124550 x^{17} + 5311735 x^{16} - 3268760 x^{15} - 4457400 x^{14} + 2496144 x^{13} + 2704156 x^{12} - 1352078 x^{11} - 1144066 x^{10} + 497420 x^{9} + 319770 x^{8} - 116280 x^{7} - 54264 x^{6} + 15504 x^{5} + 4845 x^{4} - 969 x^{3} - 171 x^{2} + 18 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[36, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(164550840223975716663655069866834081172656515609690871995791535257=73^{35}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $73$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(73\)
Dirichlet character group:    $\lbrace$$\chi_{73}(1,·)$, $\chi_{73}(2,·)$, $\chi_{73}(3,·)$, $\chi_{73}(4,·)$, $\chi_{73}(6,·)$, $\chi_{73}(8,·)$, $\chi_{73}(9,·)$, $\chi_{73}(12,·)$, $\chi_{73}(16,·)$, $\chi_{73}(18,·)$, $\chi_{73}(19,·)$, $\chi_{73}(23,·)$, $\chi_{73}(24,·)$, $\chi_{73}(25,·)$, $\chi_{73}(27,·)$, $\chi_{73}(32,·)$, $\chi_{73}(35,·)$, $\chi_{73}(36,·)$, $\chi_{73}(37,·)$, $\chi_{73}(38,·)$, $\chi_{73}(41,·)$, $\chi_{73}(46,·)$, $\chi_{73}(48,·)$, $\chi_{73}(49,·)$, $\chi_{73}(50,·)$, $\chi_{73}(54,·)$, $\chi_{73}(55,·)$, $\chi_{73}(57,·)$, $\chi_{73}(61,·)$, $\chi_{73}(64,·)$, $\chi_{73}(65,·)$, $\chi_{73}(67,·)$, $\chi_{73}(69,·)$, $\chi_{73}(70,·)$, $\chi_{73}(71,·)$, $\chi_{73}(72,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $35$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1217682649213958000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{36}$ (as 36T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{73}) \), 3.3.5329.1, 4.4.389017.1, 6.6.2073071593.1, 9.9.806460091894081.1, 12.12.313726685568359708377.1, 18.18.47477585226700098686074966922953.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ $36$ ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ $36$ $36$ ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ $18^{2}$ $18^{2}$ $36$ $36$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ $36$ $36$ $36$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
73Data not computed