magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -180, 0, 5325, 0, -61776, 0, 374154, 0, -1365584, 0, 3269436, 0, -5422832, 0, 6463399, 0, -5673268, 0, 3724921, 0, -1844392, 0, 689479, 0, -193312, 0, 39992, 0, -5920, 0, 593, 0, -36, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 36*x^34 + 593*x^32 - 5920*x^30 + 39992*x^28 - 193312*x^26 + 689479*x^24 - 1844392*x^22 + 3724921*x^20 - 5673268*x^18 + 6463399*x^16 - 5422832*x^14 + 3269436*x^12 - 1365584*x^10 + 374154*x^8 - 61776*x^6 + 5325*x^4 - 180*x^2 + 1)
gp: K = bnfinit(x^36 - 36*x^34 + 593*x^32 - 5920*x^30 + 39992*x^28 - 193312*x^26 + 689479*x^24 - 1844392*x^22 + 3724921*x^20 - 5673268*x^18 + 6463399*x^16 - 5422832*x^14 + 3269436*x^12 - 1365584*x^10 + 374154*x^8 - 61776*x^6 + 5325*x^4 - 180*x^2 + 1, 1)
\( x^{36} - 36 x^{34} + 593 x^{32} - 5920 x^{30} + 39992 x^{28} - 193312 x^{26} + 689479 x^{24} - 1844392 x^{22} + 3724921 x^{20} - 5673268 x^{18} + 6463399 x^{16} - 5422832 x^{14} + 3269436 x^{12} - 1365584 x^{10} + 374154 x^{8} - 61776 x^{6} + 5325 x^{4} - 180 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $36$ |
|
| Signature: | | $[36, 0]$ |
|
| Discriminant: | | \(141834577785145976449731181827603110001579056521289025332042530816=2^{72}\cdot 19^{34}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $64.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(152=2^{3}\cdot 19\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{152}(1,·)$, $\chi_{152}(3,·)$, $\chi_{152}(5,·)$, $\chi_{152}(135,·)$, $\chi_{152}(9,·)$, $\chi_{152}(15,·)$, $\chi_{152}(17,·)$, $\chi_{152}(147,·)$, $\chi_{152}(149,·)$, $\chi_{152}(151,·)$, $\chi_{152}(25,·)$, $\chi_{152}(27,·)$, $\chi_{152}(31,·)$, $\chi_{152}(91,·)$, $\chi_{152}(45,·)$, $\chi_{152}(49,·)$, $\chi_{152}(51,·)$, $\chi_{152}(137,·)$, $\chi_{152}(59,·)$, $\chi_{152}(61,·)$, $\chi_{152}(67,·)$, $\chi_{152}(71,·)$, $\chi_{152}(73,·)$, $\chi_{152}(75,·)$, $\chi_{152}(77,·)$, $\chi_{152}(79,·)$, $\chi_{152}(81,·)$, $\chi_{152}(85,·)$, $\chi_{152}(143,·)$, $\chi_{152}(93,·)$, $\chi_{152}(101,·)$, $\chi_{152}(103,·)$, $\chi_{152}(107,·)$, $\chi_{152}(121,·)$, $\chi_{152}(125,·)$, $\chi_{152}(127,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $35$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 1426609831093226200000 \)
(assuming GRH)
|
|
$C_2\times C_{18}$ (as 36T2):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{38}) \), \(\Q(\sqrt{19}) \), \(\Q(\sqrt{2}) \), 3.3.361.1, \(\Q(\sqrt{2}, \sqrt{19})\), 6.6.1267762688.1, 6.6.158470336.1, 6.6.66724352.1, \(\Q(\zeta_{19})^+\), 12.12.102862222917439062016.1, 18.18.735565072612935262326166126592.1, \(\Q(\zeta_{76})^+\), 18.18.38713951190154487490850848768.1
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
$18^{2}$ |
$18^{2}$ |
${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ |
${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ |
$18^{2}$ |
${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ |
R |
$18^{2}$ |
$18^{2}$ |
${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ |
${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ |
$18^{2}$ |
$18^{2}$ |
$18^{2}$ |
$18^{2}$ |
$18^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])