Normalized defining polynomial
\( x^{36} - 3 x^{35} - 69 x^{34} + 194 x^{33} + 2100 x^{32} - 5496 x^{31} - 37141 x^{30} + 90237 x^{29} + 423339 x^{28} - 958293 x^{27} - 3261144 x^{26} + 6959373 x^{25} + 17329413 x^{24} - 35601552 x^{23} - 63680853 x^{22} + 129922520 x^{21} + 159349053 x^{20} - 337769112 x^{19} - 259925101 x^{18} + 616092369 x^{17} + 246176712 x^{16} - 763692862 x^{15} - 79242273 x^{14} + 608220999 x^{13} - 78776304 x^{12} - 281930013 x^{11} + 88315116 x^{10} + 63028536 x^{9} - 29887359 x^{8} - 4534752 x^{7} + 3622138 x^{6} - 118797 x^{5} - 108390 x^{4} + 1113 x^{3} + 1272 x^{2} + 69 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{71} a^{30} + \frac{23}{71} a^{29} + \frac{31}{71} a^{28} + \frac{7}{71} a^{27} - \frac{2}{71} a^{26} - \frac{15}{71} a^{25} - \frac{32}{71} a^{24} + \frac{1}{71} a^{23} - \frac{2}{71} a^{22} - \frac{9}{71} a^{21} + \frac{20}{71} a^{20} - \frac{32}{71} a^{19} - \frac{29}{71} a^{18} + \frac{3}{71} a^{17} - \frac{1}{71} a^{16} + \frac{22}{71} a^{15} + \frac{20}{71} a^{14} - \frac{17}{71} a^{13} + \frac{13}{71} a^{12} - \frac{31}{71} a^{11} + \frac{17}{71} a^{10} + \frac{3}{71} a^{9} + \frac{17}{71} a^{8} - \frac{14}{71} a^{7} + \frac{9}{71} a^{6} - \frac{11}{71} a^{5} - \frac{33}{71} a^{4} - \frac{34}{71} a^{3} - \frac{29}{71} a^{2} - \frac{17}{71} a - \frac{21}{71}$, $\frac{1}{71} a^{31} - \frac{1}{71} a^{29} + \frac{4}{71} a^{28} - \frac{21}{71} a^{27} + \frac{31}{71} a^{26} + \frac{29}{71} a^{25} + \frac{27}{71} a^{24} - \frac{25}{71} a^{23} - \frac{34}{71} a^{22} + \frac{14}{71} a^{21} + \frac{5}{71} a^{20} - \frac{3}{71} a^{19} + \frac{31}{71} a^{18} + \frac{1}{71} a^{17} - \frac{26}{71} a^{16} + \frac{11}{71} a^{15} + \frac{20}{71} a^{14} - \frac{22}{71} a^{13} + \frac{25}{71} a^{12} + \frac{20}{71} a^{11} - \frac{33}{71} a^{10} + \frac{19}{71} a^{9} + \frac{21}{71} a^{8} - \frac{24}{71} a^{7} - \frac{5}{71} a^{6} + \frac{7}{71} a^{5} + \frac{15}{71} a^{4} - \frac{28}{71} a^{3} + \frac{11}{71} a^{2} + \frac{15}{71} a - \frac{14}{71}$, $\frac{1}{71} a^{32} + \frac{27}{71} a^{29} + \frac{10}{71} a^{28} - \frac{33}{71} a^{27} + \frac{27}{71} a^{26} + \frac{12}{71} a^{25} + \frac{14}{71} a^{24} - \frac{33}{71} a^{23} + \frac{12}{71} a^{22} - \frac{4}{71} a^{21} + \frac{17}{71} a^{20} - \frac{1}{71} a^{19} - \frac{28}{71} a^{18} - \frac{23}{71} a^{17} + \frac{10}{71} a^{16} - \frac{29}{71} a^{15} - \frac{2}{71} a^{14} + \frac{8}{71} a^{13} + \frac{33}{71} a^{12} + \frac{7}{71} a^{11} - \frac{35}{71} a^{10} + \frac{24}{71} a^{9} - \frac{7}{71} a^{8} - \frac{19}{71} a^{7} + \frac{16}{71} a^{6} + \frac{4}{71} a^{5} + \frac{10}{71} a^{4} - \frac{23}{71} a^{3} - \frac{14}{71} a^{2} - \frac{31}{71} a - \frac{21}{71}$, $\frac{1}{71} a^{33} + \frac{28}{71} a^{29} - \frac{18}{71} a^{28} - \frac{20}{71} a^{27} - \frac{5}{71} a^{26} - \frac{7}{71} a^{25} - \frac{21}{71} a^{24} - \frac{15}{71} a^{23} - \frac{21}{71} a^{22} - \frac{24}{71} a^{21} + \frac{27}{71} a^{20} - \frac{16}{71} a^{19} - \frac{21}{71} a^{18} - \frac{2}{71} a^{16} - \frac{28}{71} a^{15} - \frac{35}{71} a^{14} - \frac{5}{71} a^{13} + \frac{11}{71} a^{12} + \frac{21}{71} a^{11} - \frac{9}{71} a^{10} - \frac{17}{71} a^{9} + \frac{19}{71} a^{8} - \frac{32}{71} a^{7} - \frac{26}{71} a^{6} + \frac{23}{71} a^{5} + \frac{16}{71} a^{4} - \frac{19}{71} a^{3} - \frac{29}{71} a^{2} + \frac{12}{71} a - \frac{1}{71}$, $\frac{1}{71} a^{34} - \frac{23}{71} a^{29} + \frac{35}{71} a^{28} + \frac{12}{71} a^{27} - \frac{22}{71} a^{26} - \frac{27}{71} a^{25} + \frac{29}{71} a^{24} + \frac{22}{71} a^{23} + \frac{32}{71} a^{22} - \frac{5}{71} a^{21} - \frac{8}{71} a^{20} + \frac{23}{71} a^{19} + \frac{31}{71} a^{18} - \frac{15}{71} a^{17} - \frac{12}{71} a^{15} + \frac{3}{71} a^{14} - \frac{10}{71} a^{13} + \frac{12}{71} a^{12} + \frac{7}{71} a^{11} + \frac{4}{71} a^{10} + \frac{6}{71} a^{9} - \frac{11}{71} a^{8} + \frac{11}{71} a^{7} - \frac{16}{71} a^{6} - \frac{31}{71} a^{5} - \frac{18}{71} a^{4} - \frac{28}{71} a^{2} - \frac{22}{71} a + \frac{20}{71}$, $\frac{1}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{35} + \frac{75776606117635529788007831520524297878661266615829257811243857958789751708830144900300542715}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{34} + \frac{69507435226125531280587744445181457516799483182196047456422022547540723979117967558556156771}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{33} + \frac{109262810288747558006504136411945084416942407053066224183641275262153902425213143609166557084}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{32} - \frac{128208133512226981887783171407642193465506469236906216593575265326391815358109083157887392268}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{31} + \frac{35375887280236786212219253009764757359310594491056963032588543739968889362349491243298091696}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{30} - \frac{7789860381177172379317116676601618345935130062662380872021871585102922513542943904396221057722}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{29} - \frac{3175706255919369903263619682285297200317357132728023261153788007328656452008937238491610200366}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{28} + \frac{7260686838892839183469706599830953656658513799405148206384590088452408330106835788828816442752}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{27} + \frac{1930694025150104136489652943818933968341221735570723382061328468479807206080716769322164915614}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{26} + \frac{8333967374669127828467264020546000504796632489523277117500527553598191574383615980795819762834}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{25} + \frac{5220885261485565096923018884921273200693322685642576242724021415714718158173181347609983530860}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{24} + \frac{253906231416364135008145822889427177818264415656278136697538213427613205074945847096606592127}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{23} - \frac{6411625404913825385339119993094555789312834120849064369493705270231933523933303451203342496868}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{22} + \frac{8930742543029535435587186321699178438374384372915726572685204447259460579533514148972016912607}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{21} + \frac{5615019113093563908173690794571171367579913908637106641883335174607582459341171166199740534549}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{20} + \frac{7109409991167278126022079327040871412605281599549259820124002401298534814641440369991043135866}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{19} - \frac{7737759739232456998349568067683134929574684336827042523607777502003092575829778742973176572670}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{18} + \frac{1601256272412231684353705970445547944875139981328099503667998829624925013370531359554571324824}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{17} + \frac{5154404435041166593519329828462549054707889875721138759559577893478645877141461674898193544154}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{16} + \frac{1309421759385068513095261627535855363400834402207820624295509393968496500888001043291361215422}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{15} + \frac{5276225250393292883630389267268778700876266448338359023074301776863214187434034406087972462854}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{14} - \frac{6157359692203157028119222011184741248543419994144834942594648586035418198897860431191575414409}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{13} - \frac{7271211207394576315274150236759583837295117956666467465458312458113939300780232815387656692434}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{12} + \frac{8897503016521167178903081417871528186684770071008456301801907241165841271780609317710106848136}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{11} - \frac{4267355246861668290855906230105995888139596346832516882127884229738314138448026265699115806090}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{10} + \frac{244182733284682496584544939405332787305568654427608578025206314287243950764679131868197042179}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{9} + \frac{2510995797589750226131999166705180730615735671149988277155953561737899578707953283441262822957}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{8} + \frac{4535088744137318939728228705081678305171880076121588186838779571012545062496829692023598357711}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{7} - \frac{2652502810304111459956935638289619758653313705418901599038187584074502009539456921967562799419}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{6} + \frac{2089083681911036972628757317800597548691947758538502672342056929636588983047933864258375609770}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{5} + \frac{6309345415340937211212187110925117664289004250287889927433021849125896121472603549111915887710}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{4} - \frac{3920237716536579849746720600117828358919083452140597782676780275457507176505750581992665860133}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{3} - \frac{3289577172904634963832717809051368649981103859347268904765670431952591524998358189531237190429}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a^{2} - \frac{3560827921178537443917495164900818783711589967128980040523632876135555198289017254170918770036}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629} a - \frac{5563331479952183823228764476508581170067522387086446861524086153179228583902808424629507426994}{18354267156144129536093465374130701007825995491530700119103986070973727579814673100657612388629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16003335917605122000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||