Normalized defining polynomial
\( x^{36} - 90 x^{34} + 3537 x^{32} - 80130 x^{30} + 1165662 x^{28} - 1187 x^{27} - 11505240 x^{26} + 60876 x^{25} + 79561287 x^{24} - 1248885 x^{23} - 393214770 x^{22} + 13538481 x^{21} + 1405474902 x^{20} - 87330726 x^{19} - 3650721350 x^{18} + 358455213 x^{17} + 6873288795 x^{16} - 971296587 x^{15} - 9272415006 x^{14} + 1763581788 x^{13} + 8756851740 x^{12} - 2137188807 x^{11} - 5555566935 x^{10} + 1686910755 x^{9} + 2198845116 x^{8} - 821976822 x^{7} - 465058575 x^{6} + 221243481 x^{5} + 30525471 x^{4} - 24720957 x^{3} + 2832975 x^{2} - 30861 x - 3561 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{17} a^{27} - \frac{6}{17} a^{25} + \frac{1}{17} a^{23} + \frac{7}{17} a^{21} - \frac{3}{17} a^{19} - \frac{7}{17} a^{18} - \frac{7}{17} a^{17} - \frac{2}{17} a^{16} - \frac{2}{17} a^{15} + \frac{3}{17} a^{14} + \frac{1}{17} a^{13} + \frac{8}{17} a^{12} + \frac{2}{17} a^{11} + \frac{4}{17} a^{10} + \frac{8}{17} a^{9} + \frac{7}{17} a^{8} + \frac{7}{17} a^{7} - \frac{6}{17} a^{6} + \frac{8}{17} a^{5} + \frac{4}{17} a^{4} + \frac{6}{17} a^{3} + \frac{6}{17} a^{2} - \frac{2}{17} a + \frac{6}{17}$, $\frac{1}{17} a^{28} - \frac{6}{17} a^{26} + \frac{1}{17} a^{24} + \frac{7}{17} a^{22} - \frac{3}{17} a^{20} - \frac{7}{17} a^{19} - \frac{7}{17} a^{18} - \frac{2}{17} a^{17} - \frac{2}{17} a^{16} + \frac{3}{17} a^{15} + \frac{1}{17} a^{14} + \frac{8}{17} a^{13} + \frac{2}{17} a^{12} + \frac{4}{17} a^{11} + \frac{8}{17} a^{10} + \frac{7}{17} a^{9} + \frac{7}{17} a^{8} - \frac{6}{17} a^{7} + \frac{8}{17} a^{6} + \frac{4}{17} a^{5} + \frac{6}{17} a^{4} + \frac{6}{17} a^{3} - \frac{2}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{17} a^{29} - \frac{1}{17} a^{25} - \frac{4}{17} a^{23} + \frac{5}{17} a^{21} - \frac{7}{17} a^{20} - \frac{8}{17} a^{19} + \frac{7}{17} a^{18} + \frac{7}{17} a^{17} + \frac{8}{17} a^{16} + \frac{6}{17} a^{15} - \frac{8}{17} a^{14} + \frac{8}{17} a^{13} + \frac{1}{17} a^{12} + \frac{3}{17} a^{11} - \frac{3}{17} a^{10} + \frac{4}{17} a^{9} + \frac{2}{17} a^{8} - \frac{1}{17} a^{7} + \frac{2}{17} a^{6} + \frac{3}{17} a^{5} - \frac{4}{17} a^{4} + \frac{8}{17} a^{2} + \frac{5}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{30} - \frac{1}{17} a^{26} - \frac{4}{17} a^{24} + \frac{5}{17} a^{22} - \frac{7}{17} a^{21} - \frac{8}{17} a^{20} + \frac{7}{17} a^{19} + \frac{7}{17} a^{18} + \frac{8}{17} a^{17} + \frac{6}{17} a^{16} - \frac{8}{17} a^{15} + \frac{8}{17} a^{14} + \frac{1}{17} a^{13} + \frac{3}{17} a^{12} - \frac{3}{17} a^{11} + \frac{4}{17} a^{10} + \frac{2}{17} a^{9} - \frac{1}{17} a^{8} + \frac{2}{17} a^{7} + \frac{3}{17} a^{6} - \frac{4}{17} a^{5} + \frac{8}{17} a^{3} + \frac{5}{17} a^{2} + \frac{2}{17} a$, $\frac{1}{1698317} a^{31} - \frac{34192}{1698317} a^{30} - \frac{29693}{1698317} a^{29} - \frac{43544}{1698317} a^{28} - \frac{29541}{1698317} a^{27} + \frac{539491}{1698317} a^{26} + \frac{8199}{1698317} a^{25} + \frac{117313}{1698317} a^{24} + \frac{438094}{1698317} a^{23} + \frac{837458}{1698317} a^{22} - \frac{515647}{1698317} a^{21} + \frac{314169}{1698317} a^{20} + \frac{310562}{1698317} a^{19} + \frac{40108}{1698317} a^{18} - \frac{692005}{1698317} a^{17} - \frac{517808}{1698317} a^{16} + \frac{47029}{99901} a^{15} + \frac{329894}{1698317} a^{14} + \frac{406211}{1698317} a^{13} - \frac{815859}{1698317} a^{12} - \frac{733206}{1698317} a^{11} + \frac{6995}{99901} a^{10} - \frac{26168}{1698317} a^{9} + \frac{221114}{1698317} a^{8} - \frac{710206}{1698317} a^{7} - \frac{255303}{1698317} a^{6} + \frac{609491}{1698317} a^{5} + \frac{23232}{99901} a^{4} + \frac{473596}{1698317} a^{3} - \frac{581665}{1698317} a^{2} + \frac{27777}{99901} a - \frac{53315}{1698317}$, $\frac{1}{1698317} a^{32} + \frac{18846}{1698317} a^{30} - \frac{12737}{1698317} a^{29} + \frac{38515}{1698317} a^{28} - \frac{26776}{1698317} a^{27} - \frac{235377}{1698317} a^{26} - \frac{264289}{1698317} a^{25} + \frac{279337}{1698317} a^{24} - \frac{506949}{1698317} a^{23} + \frac{13157}{99901} a^{22} - \frac{259476}{1698317} a^{21} + \frac{222282}{1698317} a^{20} - \frac{600387}{1698317} a^{19} - \frac{160791}{1698317} a^{18} + \frac{698389}{1698317} a^{17} + \frac{563379}{1698317} a^{16} + \frac{22601}{99901} a^{15} - \frac{679061}{1698317} a^{14} - \frac{385872}{1698317} a^{13} - \frac{428696}{1698317} a^{12} + \frac{695115}{1698317} a^{11} - \frac{754495}{1698317} a^{10} - \frac{600994}{1698317} a^{9} + \frac{510616}{1698317} a^{8} + \frac{16522}{1698317} a^{7} + \frac{738596}{1698317} a^{6} - \frac{36592}{1698317} a^{5} + \frac{381070}{1698317} a^{4} - \frac{839828}{1698317} a^{3} + \frac{673411}{1698317} a^{2} + \frac{24500}{99901} a - \frac{452537}{1698317}$, $\frac{1}{1698317} a^{33} + \frac{485}{99901} a^{30} - \frac{12609}{1698317} a^{29} + \frac{16634}{1698317} a^{28} + \frac{45739}{1698317} a^{27} - \frac{586905}{1698317} a^{26} - \frac{691180}{1698317} a^{25} + \frac{620195}{1698317} a^{24} + \frac{222290}{1698317} a^{23} + \frac{665749}{1698317} a^{22} - \frac{163735}{1698317} a^{21} - \frac{197190}{1698317} a^{20} + \frac{287248}{1698317} a^{19} - \frac{824528}{1698317} a^{18} + \frac{513564}{1698317} a^{17} + \frac{364402}{1698317} a^{16} - \frac{655517}{1698317} a^{15} - \frac{329362}{1698317} a^{14} + \frac{631339}{1698317} a^{13} - \frac{687794}{1698317} a^{12} + \frac{837580}{1698317} a^{11} + \frac{5455}{1698317} a^{10} + \frac{33024}{99901} a^{9} - \frac{127311}{1698317} a^{8} - \frac{454118}{1698317} a^{7} + \frac{371388}{1698317} a^{6} - \frac{68742}{1698317} a^{5} + \frac{568167}{1698317} a^{4} - \frac{460574}{1698317} a^{3} + \frac{138558}{1698317} a^{2} + \frac{776442}{1698317} a - \frac{529273}{1698317}$, $\frac{1}{1698317} a^{34} - \frac{20191}{1698317} a^{30} - \frac{21932}{1698317} a^{29} + \frac{21825}{1698317} a^{28} + \frac{19408}{1698317} a^{27} - \frac{103044}{1698317} a^{26} + \frac{152912}{1698317} a^{25} + \frac{317988}{1698317} a^{24} + \frac{301572}{1698317} a^{23} + \frac{551779}{1698317} a^{22} - \frac{74631}{1698317} a^{21} + \frac{696476}{1698317} a^{20} + \frac{453026}{1698317} a^{19} - \frac{603497}{1698317} a^{18} - \frac{399493}{1698317} a^{17} + \frac{1614}{1698317} a^{16} + \frac{417744}{1698317} a^{15} - \frac{37581}{99901} a^{14} - \frac{416761}{1698317} a^{13} - \frac{237810}{1698317} a^{12} + \frac{479217}{1698317} a^{11} + \frac{2126}{99901} a^{10} - \frac{158311}{1698317} a^{9} - \frac{645501}{1698317} a^{8} + \frac{622446}{1698317} a^{7} + \frac{190225}{1698317} a^{6} - \frac{464036}{1698317} a^{5} + \frac{598152}{1698317} a^{4} + \frac{70024}{1698317} a^{3} + \frac{657060}{1698317} a^{2} - \frac{51201}{1698317} a + \frac{217577}{1698317}$, $\frac{1}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{35} - \frac{474594083438788577194954238883048480110746348175531773913054208643932835437345100119619}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{34} + \frac{1226500729051593393751657965236925386999396788588698476840295511927771682296832439916917}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{33} - \frac{594261812283289236478941148651847650114165768489753456756003891946325936618751239385177}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{32} - \frac{69432076611289629736484501420097679449961900934422943612313778177779996445240296776434}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{31} + \frac{65616175035781091138800497639688313883332550435413712357339808248072510467616250650849318331}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{30} + \frac{124906933593552594982158627999765248215579736310775550473134068098713383983343551037188858519}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{29} - \frac{18621375380083435045470626183805310156021771462969550770334348353482793037582565770398309037}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{28} + \frac{22099496873684136764889299376993495215788437753363951268839513002331891265471952195595576412}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{27} - \frac{334621654822832177134392338850617234686559814648146648752096564486055941610862068189616870392}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{26} + \frac{168683021997577932108307431577815287358627859945998758766468273144099567196924767743098701706}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{25} + \frac{876626814612002883848498841412897643873311677442868810527568692079732028735772706865183521206}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{24} - \frac{1242207482975891260134492868053618119151021974098089592288940406828906668770982529253580470649}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{23} - \frac{1200122200917912845890316302723304717162118310223147779533492509487968030976179571801730394536}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{22} + \frac{2231300368538423612745692338357199223207706516223472009456126515108310196845004575224346975897}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{21} - \frac{1000589413528147687783040386947144800969742421248354699960455980014795839363149125977728965721}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{20} + \frac{1960057827426557903467942794700887576522027802450317154334129834874582272596412112627119287020}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{19} + \frac{1805416100700143487298667564362920606665531450841671545146925385034360078022123108686238512599}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{18} + \frac{298391605093810593948782380116014813642021663190950257214096001481331721745207670526950398297}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{17} + \frac{737406543704903154553997240589764396967688822628157331177450584816143524216269921069735499597}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{16} + \frac{142145906722665021930708609270938327120467724488792470981426071017080511680654399990813880497}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{15} - \frac{1578250360751486079129775194195902727003402163137866191173767815672145944991086010254748374076}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{14} - \frac{2064438007804994802083468488792995649947490538181050334967106654619599737205452465528143378637}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{13} + \frac{1979362548037493539488711977256435482673580220177777113457899060171729890275362153446110426360}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{12} - \frac{1853246439364240468909246571227220035014237738196823612195734840711451796605108942854098639382}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{11} - \frac{1435670326169181497766707437737326509296382143417235243391703299570284589572760886391110049551}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{10} - \frac{3608026264645853656597102511532110328779358810117919503075319264210990262020220355565871638}{270106715607522387295716878131616037174192155445233208151744488492929446964840477398166307491} a^{9} + \frac{1515621431028838586494540448877976803458957434877733122593687755877410688647636888806127789147}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{8} - \frac{442349100668407789574562456419438531588906999389216484961437220400299527277080446509191955053}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{7} - \frac{2074641578988835161676820240041126885471124023145507331155900388004193849866764617359468965614}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{6} + \frac{2014569110238979105317309531967248527421751530089497941345868961129837799453037604027816500266}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{5} + \frac{1185208016289532516149898542744930682517513353033741561244435910940614434076479153767253858816}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{4} + \frac{894060595101720876656381693872479124869495943508876980336421244230808018656226915248704907767}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{3} - \frac{602201506981001610303164856058219415101148029272105357844371383159858047592617386907183549937}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a^{2} + \frac{1533796403279418284317128937311999266362602158811910862866051257718686927155764034533899995222}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347} a + \frac{572419182371460738443882884127227546598340504499802096709378370438456164431040170173179876930}{4591814165327880584027186928237472631961266642568964538579656304379800598402288115768827227347}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $35$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20453357667044700000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{9})^+\), 4.4.19773.1, 6.6.14414517.1, \(\Q(\zeta_{27})^+\), 12.12.4108400332687853397.1, 18.18.10443002414754749649962321483613.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $36$ | R | $36$ | $36$ | $36$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $18^{2}$ | $36$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | $36$ | $18^{2}$ | $36$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||