# Oscar code for working with number field 36.0.9970805384609063732920125000000000000000000000000.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 3*x^35 + 6*x^34 - 11*x^33 + 21*x^32 - 39*x^31 + 113*x^30 - 237*x^29 + 381*x^28 - 379*x^27 + 102*x^26 + 873*x^25 - 2357*x^24 + 5118*x^23 - 8217*x^22 + 11388*x^21 - 11523*x^20 + 7506*x^19 + 5558*x^18 - 23193*x^17 + 47733*x^16 - 72176*x^15 + 93003*x^14 - 106809*x^13 + 114281*x^12 - 118527*x^11 + 110259*x^10 - 81844*x^9 + 43665*x^8 - 14157*x^7 + 1524*x^6 + 732*x^5 - 297*x^4 + 7*x^3 + 27*x^2 - 9*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]