Normalized defining polynomial
\( x^{36} - 2506 x^{27} + 4326911 x^{18} - 4894531250 x^{9} + 3814697265625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{284} a^{18} + \frac{25}{284} a^{9} + \frac{57}{284}$, $\frac{1}{1420} a^{19} + \frac{309}{1420} a^{10} + \frac{341}{1420} a$, $\frac{1}{7100} a^{20} - \frac{2531}{7100} a^{11} + \frac{1761}{7100} a^{2}$, $\frac{1}{35500} a^{21} - \frac{9631}{35500} a^{12} - \frac{5339}{35500} a^{3}$, $\frac{1}{177500} a^{22} - \frac{80631}{177500} a^{13} + \frac{65661}{177500} a^{4}$, $\frac{1}{887500} a^{23} - \frac{80631}{887500} a^{14} + \frac{420661}{887500} a^{5}$, $\frac{1}{4437500} a^{24} - \frac{80631}{4437500} a^{15} + \frac{420661}{4437500} a^{6}$, $\frac{1}{22187500} a^{25} - \frac{80631}{22187500} a^{16} + \frac{420661}{22187500} a^{7}$, $\frac{1}{110937500} a^{26} - \frac{22268131}{110937500} a^{17} + \frac{420661}{110937500} a^{8}$, $\frac{1}{2400083445312500} a^{27} + \frac{151979}{554687500} a^{18} + \frac{82031251}{554687500} a^{9} - \frac{93029213}{307210681}$, $\frac{1}{12000417226562500} a^{28} + \frac{151979}{2773437500} a^{19} - \frac{1027343749}{2773437500} a^{10} - \frac{141490115}{307210681} a$, $\frac{1}{60002086132812500} a^{29} + \frac{151979}{13867187500} a^{20} + \frac{4519531251}{13867187500} a^{11} + \frac{165720566}{1536053405} a^{2}$, $\frac{1}{300010430664062500} a^{30} + \frac{151979}{69335937500} a^{21} - \frac{23214843749}{69335937500} a^{12} - \frac{2906386244}{7680267025} a^{3}$, $\frac{1}{1500052153320312500} a^{31} + \frac{151979}{346679687500} a^{22} - \frac{161886718749}{346679687500} a^{13} - \frac{10586653269}{38401335125} a^{4}$, $\frac{1}{7500260766601562500} a^{32} + \frac{151979}{1733398437500} a^{23} - \frac{508566406249}{1733398437500} a^{14} - \frac{87389323519}{192006675625} a^{5}$, $\frac{1}{37501303833007812500} a^{33} + \frac{151979}{8666992187500} a^{24} - \frac{2241964843749}{8666992187500} a^{15} - \frac{471402674769}{960033378125} a^{6}$, $\frac{1}{187506519165039062500} a^{34} + \frac{151979}{43334960937500} a^{25} - \frac{10908957031249}{43334960937500} a^{16} - \frac{1431436052894}{4800166890625} a^{7}$, $\frac{1}{937532595825195312500} a^{35} + \frac{151979}{216674804687500} a^{26} - \frac{97578878906249}{216674804687500} a^{17} + \frac{3368730837731}{24000834453125} a^{8}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19645787}{750026076660156250} a^{31} - \frac{15679}{346679687500} a^{22} + \frac{21713449}{346679687500} a^{13} - \frac{48996875}{1228842724} a^{4} \) (order $54$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | $18^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |