Normalized defining polynomial
\( x^{36} + 70 x^{30} + 4067 x^{24} + 57624 x^{18} + 669879 x^{12} + 285719 x^{6} + 117649 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{7} a^{10}$, $\frac{1}{7} a^{11}$, $\frac{1}{49} a^{12}$, $\frac{1}{49} a^{13}$, $\frac{1}{49} a^{14}$, $\frac{1}{49} a^{15}$, $\frac{1}{343} a^{16} + \frac{1}{49} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{343} a^{17} + \frac{1}{49} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{343} a^{18}$, $\frac{1}{343} a^{19}$, $\frac{1}{343} a^{20}$, $\frac{1}{343} a^{21}$, $\frac{1}{2401} a^{22} - \frac{1}{7} a^{4}$, $\frac{1}{2401} a^{23} - \frac{1}{7} a^{5}$, $\frac{1}{31213} a^{24} - \frac{4}{637} a^{12} + \frac{3}{13}$, $\frac{1}{31213} a^{25} - \frac{4}{637} a^{13} + \frac{3}{13} a$, $\frac{1}{218491} a^{26} - \frac{2}{2401} a^{20} - \frac{4}{4459} a^{14} - \frac{2}{49} a^{8} + \frac{29}{91} a^{2}$, $\frac{1}{218491} a^{27} - \frac{2}{2401} a^{21} - \frac{4}{4459} a^{15} - \frac{2}{49} a^{9} + \frac{29}{91} a^{3}$, $\frac{1}{218491} a^{28} - \frac{4}{4459} a^{16} - \frac{2}{49} a^{10} + \frac{3}{91} a^{4}$, $\frac{1}{218491} a^{29} - \frac{4}{4459} a^{17} - \frac{2}{49} a^{11} + \frac{3}{91} a^{5}$, $\frac{1}{5022452617} a^{30} + \frac{2307}{717493231} a^{24} + \frac{35239}{102499033} a^{18} - \frac{39050}{14642719} a^{12} + \frac{89651}{2091817} a^{6} + \frac{33805}{298831}$, $\frac{1}{5022452617} a^{31} + \frac{2307}{717493231} a^{25} + \frac{35239}{102499033} a^{19} - \frac{39050}{14642719} a^{13} + \frac{89651}{2091817} a^{7} + \frac{33805}{298831} a$, $\frac{1}{35157168319} a^{32} + \frac{2307}{5022452617} a^{26} - \frac{37656}{102499033} a^{20} - \frac{636712}{102499033} a^{14} + \frac{986144}{14642719} a^{8} + \frac{33805}{2091817} a^{2}$, $\frac{1}{35157168319} a^{33} + \frac{2307}{5022452617} a^{27} - \frac{37656}{102499033} a^{21} - \frac{636712}{102499033} a^{15} + \frac{986144}{14642719} a^{9} + \frac{33805}{2091817} a^{3}$, $\frac{1}{35157168319} a^{34} + \frac{2307}{5022452617} a^{28} + \frac{35239}{717493231} a^{22} - \frac{39050}{102499033} a^{16} - \frac{72573}{2091817} a^{10} + \frac{332636}{2091817} a^{4}$, $\frac{1}{35157168319} a^{35} + \frac{2307}{5022452617} a^{29} + \frac{35239}{717493231} a^{23} - \frac{39050}{102499033} a^{17} - \frac{72573}{2091817} a^{11} + \frac{332636}{2091817} a^{5}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{24252}{5022452617} a^{32} + \frac{1694080}{5022452617} a^{26} + \frac{14060864}{717493231} a^{20} + \frac{28279701}{102499033} a^{14} + \frac{47264832}{14642719} a^{8} + \frac{2879936}{2091817} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||