Normalized defining polynomial
\( x^{36} + 6 x^{34} + 27 x^{32} + 111 x^{30} + 441 x^{28} + 1728 x^{26} + 6732 x^{24} + 12906 x^{22} + 22032 x^{20} + 36234 x^{18} + 57834 x^{16} + 86994 x^{14} + 110160 x^{12} + 51516 x^{10} + 24057 x^{8} + 11178 x^{6} + 5103 x^{4} + 2187 x^{2} + 729 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{9} a^{12}$, $\frac{1}{9} a^{13}$, $\frac{1}{36} a^{14} + \frac{1}{4}$, $\frac{1}{36} a^{15} + \frac{1}{4} a$, $\frac{1}{36} a^{16} + \frac{1}{4} a^{2}$, $\frac{1}{36} a^{17} + \frac{1}{4} a^{3}$, $\frac{1}{108} a^{18} - \frac{1}{4} a^{4}$, $\frac{1}{108} a^{19} - \frac{1}{4} a^{5}$, $\frac{1}{108} a^{20} + \frac{1}{12} a^{6}$, $\frac{1}{108} a^{21} + \frac{1}{12} a^{7}$, $\frac{1}{108} a^{22} + \frac{1}{12} a^{8}$, $\frac{1}{108} a^{23} + \frac{1}{12} a^{9}$, $\frac{1}{324} a^{24} - \frac{1}{12} a^{10}$, $\frac{1}{324} a^{25} - \frac{1}{12} a^{11}$, $\frac{1}{4531788} a^{26} + \frac{3353}{2265894} a^{24} + \frac{901}{251766} a^{22} - \frac{139}{125883} a^{20} + \frac{998}{377649} a^{18} + \frac{1469}{167844} a^{16} - \frac{1189}{503532} a^{14} - \frac{22139}{503532} a^{12} + \frac{3643}{83922} a^{10} - \frac{1777}{27974} a^{8} + \frac{181}{13987} a^{6} - \frac{3083}{13987} a^{4} + \frac{6739}{55948} a^{2} + \frac{27711}{55948}$, $\frac{1}{4531788} a^{27} + \frac{3353}{2265894} a^{25} + \frac{901}{251766} a^{23} - \frac{139}{125883} a^{21} + \frac{998}{377649} a^{19} + \frac{1469}{167844} a^{17} - \frac{1189}{503532} a^{15} - \frac{22139}{503532} a^{13} + \frac{3643}{83922} a^{11} - \frac{1777}{27974} a^{9} + \frac{181}{13987} a^{7} - \frac{3083}{13987} a^{5} + \frac{6739}{55948} a^{3} + \frac{27711}{55948} a$, $\frac{1}{18127152} a^{28} + \frac{10333}{1007064} a^{14} + \frac{99225}{223792}$, $\frac{1}{18127152} a^{29} + \frac{10333}{1007064} a^{15} + \frac{99225}{223792} a$, $\frac{1}{54381456} a^{30} + \frac{12769}{1007064} a^{16} - \frac{22873}{223792} a^{2}$, $\frac{1}{54381456} a^{31} + \frac{12769}{1007064} a^{17} - \frac{22873}{223792} a^{3}$, $\frac{1}{54381456} a^{32} + \frac{10333}{3021192} a^{18} + \frac{33075}{223792} a^{4}$, $\frac{1}{54381456} a^{33} + \frac{10333}{3021192} a^{19} + \frac{33075}{223792} a^{5}$, $\frac{1}{54381456} a^{34} + \frac{10333}{3021192} a^{20} + \frac{33075}{223792} a^{6}$, $\frac{1}{54381456} a^{35} + \frac{10333}{3021192} a^{21} + \frac{33075}{223792} a^{7}$
Class group and class number
$C_{2}\times C_{14}\times C_{182}$, which has order $5096$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19}{2014128} a^{32} + \frac{377893}{3021192} a^{18} - \frac{1022295}{223792} a^{4} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36543757083175.945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||