Properties

Label 36.0.90067643300...9616.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{36}\cdot 3^{54}\cdot 7^{30}$
Root discriminant $52.60$
Ramified primes $2, 3, 7$
Class number $20384$ (GRH)
Class group $[2, 28, 364]$ (GRH)
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 432, 0, 12276, 0, 122466, 0, 640764, 0, 2066547, 0, 4475587, 0, 6854571, 0, 7674462, 0, 6417344, 0, 4059891, 0, 1954770, 0, 715780, 0, 197721, 0, 40485, 0, 5953, 0, 594, 0, 36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 36*x^34 + 594*x^32 + 5953*x^30 + 40485*x^28 + 197721*x^26 + 715780*x^24 + 1954770*x^22 + 4059891*x^20 + 6417344*x^18 + 7674462*x^16 + 6854571*x^14 + 4475587*x^12 + 2066547*x^10 + 640764*x^8 + 122466*x^6 + 12276*x^4 + 432*x^2 + 1)
 
gp: K = bnfinit(x^36 + 36*x^34 + 594*x^32 + 5953*x^30 + 40485*x^28 + 197721*x^26 + 715780*x^24 + 1954770*x^22 + 4059891*x^20 + 6417344*x^18 + 7674462*x^16 + 6854571*x^14 + 4475587*x^12 + 2066547*x^10 + 640764*x^8 + 122466*x^6 + 12276*x^4 + 432*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} + 36 x^{34} + 594 x^{32} + 5953 x^{30} + 40485 x^{28} + 197721 x^{26} + 715780 x^{24} + 1954770 x^{22} + 4059891 x^{20} + 6417344 x^{18} + 7674462 x^{16} + 6854571 x^{14} + 4475587 x^{12} + 2066547 x^{10} + 640764 x^{8} + 122466 x^{6} + 12276 x^{4} + 432 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(90067643300370785938616861622694756230952958181429238736879616=2^{36}\cdot 3^{54}\cdot 7^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(252=2^{2}\cdot 3^{2}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{252}(1,·)$, $\chi_{252}(131,·)$, $\chi_{252}(5,·)$, $\chi_{252}(143,·)$, $\chi_{252}(17,·)$, $\chi_{252}(151,·)$, $\chi_{252}(25,·)$, $\chi_{252}(163,·)$, $\chi_{252}(37,·)$, $\chi_{252}(167,·)$, $\chi_{252}(41,·)$, $\chi_{252}(43,·)$, $\chi_{252}(173,·)$, $\chi_{252}(47,·)$, $\chi_{252}(185,·)$, $\chi_{252}(59,·)$, $\chi_{252}(169,·)$, $\chi_{252}(193,·)$, $\chi_{252}(67,·)$, $\chi_{252}(205,·)$, $\chi_{252}(79,·)$, $\chi_{252}(209,·)$, $\chi_{252}(83,·)$, $\chi_{252}(85,·)$, $\chi_{252}(215,·)$, $\chi_{252}(89,·)$, $\chi_{252}(227,·)$, $\chi_{252}(101,·)$, $\chi_{252}(235,·)$, $\chi_{252}(109,·)$, $\chi_{252}(211,·)$, $\chi_{252}(247,·)$, $\chi_{252}(121,·)$, $\chi_{252}(251,·)$, $\chi_{252}(125,·)$, $\chi_{252}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{28}\times C_{364}$, which has order $20384$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{21} + 21 a^{19} + 189 a^{17} + 952 a^{15} + 2940 a^{13} + 5733 a^{11} + 7007 a^{9} + 5148 a^{7} + 2079 a^{5} + 385 a^{3} + 21 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 816369751172.7767 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6^2$ (as 36T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, \(\Q(i, \sqrt{21})\), 6.0.419904.1, 6.0.1008189504.2, 6.0.153664.1, 6.0.1008189504.1, 6.6.6751269.1, 6.0.432081216.1, 6.6.330812181.1, 6.0.21171979584.1, \(\Q(\zeta_{21})^+\), 6.0.29042496.1, 6.6.330812181.2, 6.0.21171979584.2, 9.9.62523502209.1, 12.0.186694177220038656.1, 12.0.448252719505312813056.2, 12.0.843466573910016.1, 12.0.448252719505312813056.1, 18.0.1024770265180753855691096064.1, \(\Q(\zeta_{63})^+\), 18.0.9490397425838961457555240648704.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.3.0.1}{3} }^{12}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{12}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
3Data not computed
7Data not computed