Normalized defining polynomial
\( x^{36} + 91 x^{34} + 3731 x^{32} + 91364 x^{30} + 1493765 x^{28} + 17271618 x^{26} + 145978105 x^{24} + 919646455 x^{22} + 4365494770 x^{20} + 15684015256 x^{18} + 42607368076 x^{16} + 86981860147 x^{14} + 131846926939 x^{12} + 145558267218 x^{10} + 113655085362 x^{8} + 60003090875 x^{6} + 19902563681 x^{4} + 3618647942 x^{2} + 258474853 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{7} a^{10}$, $\frac{1}{7} a^{11}$, $\frac{1}{637} a^{12}$, $\frac{1}{637} a^{13}$, $\frac{1}{637} a^{14}$, $\frac{1}{637} a^{15}$, $\frac{1}{637} a^{16}$, $\frac{1}{637} a^{17}$, $\frac{1}{4459} a^{18}$, $\frac{1}{4459} a^{19}$, $\frac{1}{4459} a^{20}$, $\frac{1}{4459} a^{21}$, $\frac{1}{57967} a^{22} - \frac{4}{91} a^{10}$, $\frac{1}{57967} a^{23} - \frac{4}{91} a^{11}$, $\frac{1}{1217307} a^{24} + \frac{1}{173901} a^{22} + \frac{1}{13377} a^{20} + \frac{1}{13377} a^{18} + \frac{1}{1911} a^{16} + \frac{1}{1911} a^{14} + \frac{1}{1911} a^{12} - \frac{17}{273} a^{10} + \frac{1}{21} a^{8} + \frac{1}{21} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{1217307} a^{25} + \frac{1}{173901} a^{23} + \frac{1}{13377} a^{21} + \frac{1}{13377} a^{19} + \frac{1}{1911} a^{17} + \frac{1}{1911} a^{15} + \frac{1}{1911} a^{13} - \frac{17}{273} a^{11} + \frac{1}{21} a^{9} + \frac{1}{21} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{1217307} a^{26} - \frac{1}{3}$, $\frac{1}{1217307} a^{27} - \frac{1}{3} a$, $\frac{1}{1217307} a^{28} - \frac{1}{3} a^{2}$, $\frac{1}{1217307} a^{29} - \frac{1}{3} a^{3}$, $\frac{1}{8521149} a^{30} - \frac{1}{3} a^{4}$, $\frac{1}{8521149} a^{31} - \frac{1}{3} a^{5}$, $\frac{1}{110774937} a^{32} + \frac{6}{57967} a^{20} + \frac{1}{91} a^{8} - \frac{1}{21} a^{6}$, $\frac{1}{110774937} a^{33} + \frac{6}{57967} a^{21} + \frac{1}{91} a^{9} - \frac{1}{21} a^{7}$, $\frac{1}{20050263597} a^{34} - \frac{3}{6683421199} a^{32} + \frac{12}{514109323} a^{30} + \frac{76}{220332567} a^{28} - \frac{18}{73444189} a^{26} + \frac{80}{220332567} a^{24} - \frac{193}{31476081} a^{22} - \frac{370}{31476081} a^{20} + \frac{257}{2421237} a^{18} + \frac{206}{345891} a^{16} - \frac{160}{345891} a^{14} - \frac{58}{345891} a^{12} - \frac{661}{49413} a^{10} + \frac{2911}{49413} a^{8} - \frac{178}{3801} a^{6} - \frac{202}{543} a^{4} - \frac{257}{543} a^{2} - \frac{85}{543}$, $\frac{1}{20050263597} a^{35} - \frac{3}{6683421199} a^{33} + \frac{12}{514109323} a^{31} + \frac{76}{220332567} a^{29} - \frac{18}{73444189} a^{27} + \frac{80}{220332567} a^{25} - \frac{193}{31476081} a^{23} - \frac{370}{31476081} a^{21} + \frac{257}{2421237} a^{19} + \frac{206}{345891} a^{17} - \frac{160}{345891} a^{15} - \frac{58}{345891} a^{13} - \frac{661}{49413} a^{11} + \frac{2911}{49413} a^{9} - \frac{178}{3801} a^{7} - \frac{202}{543} a^{5} - \frac{257}{543} a^{3} - \frac{85}{543} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |