Normalized defining polynomial
\( x^{36} - 9 x^{34} + 67 x^{32} - 478 x^{30} + 3373 x^{28} - 23732 x^{26} + 166844 x^{24} - 325502 x^{22} + 617434 x^{20} - 1166722 x^{18} + 2181924 x^{16} - 3920642 x^{14} + 5905564 x^{12} - 443012 x^{10} + 33233 x^{8} - 2493 x^{6} + 187 x^{4} - 14 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} + \frac{1}{4}$, $\frac{1}{4} a^{15} + \frac{1}{4} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{19} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{20} + \frac{1}{4} a^{6}$, $\frac{1}{4} a^{21} + \frac{1}{4} a^{7}$, $\frac{1}{4} a^{22} + \frac{1}{4} a^{8}$, $\frac{1}{4} a^{23} + \frac{1}{4} a^{9}$, $\frac{1}{20} a^{24} + \frac{1}{20} a^{20} + \frac{1}{20} a^{16} - \frac{1}{5} a^{12} + \frac{1}{4} a^{10} - \frac{1}{5} a^{8} + \frac{1}{4} a^{6} - \frac{1}{5} a^{4} + \frac{1}{4} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{25} + \frac{1}{20} a^{21} + \frac{1}{20} a^{17} - \frac{1}{5} a^{13} + \frac{1}{4} a^{11} - \frac{1}{5} a^{9} + \frac{1}{4} a^{7} - \frac{1}{5} a^{5} + \frac{1}{4} a^{3} - \frac{1}{5} a$, $\frac{1}{304623237260} a^{26} - \frac{4605546001}{304623237260} a^{24} - \frac{37413186779}{304623237260} a^{22} + \frac{20417278449}{304623237260} a^{20} - \frac{36144391709}{304623237260} a^{18} + \frac{715004559}{304623237260} a^{16} + \frac{5558577139}{76155809315} a^{14} - \frac{86986800951}{304623237260} a^{12} + \frac{62203110071}{304623237260} a^{10} - \frac{80658946771}{304623237260} a^{8} - \frac{134082028419}{304623237260} a^{6} + \frac{65241930359}{304623237260} a^{4} + \frac{75981213051}{304623237260} a^{2} - \frac{23082836599}{76155809315}$, $\frac{1}{304623237260} a^{27} - \frac{4605546001}{304623237260} a^{25} - \frac{37413186779}{304623237260} a^{23} + \frac{20417278449}{304623237260} a^{21} - \frac{36144391709}{304623237260} a^{19} + \frac{715004559}{304623237260} a^{17} + \frac{5558577139}{76155809315} a^{15} - \frac{86986800951}{304623237260} a^{13} + \frac{62203110071}{304623237260} a^{11} - \frac{80658946771}{304623237260} a^{9} - \frac{134082028419}{304623237260} a^{7} + \frac{65241930359}{304623237260} a^{5} + \frac{75981213051}{304623237260} a^{3} - \frac{23082836599}{76155809315} a$, $\frac{1}{1218492949040} a^{28} + \frac{8698764817}{121849294904} a^{14} - \frac{6626441751}{1218492949040}$, $\frac{1}{1218492949040} a^{29} + \frac{8698764817}{121849294904} a^{15} - \frac{6626441751}{1218492949040} a$, $\frac{1}{1218492949040} a^{30} + \frac{8698764817}{121849294904} a^{16} - \frac{6626441751}{1218492949040} a^{2}$, $\frac{1}{1218492949040} a^{31} + \frac{8698764817}{121849294904} a^{17} - \frac{6626441751}{1218492949040} a^{3}$, $\frac{1}{1218492949040} a^{32} + \frac{8698764817}{121849294904} a^{18} - \frac{6626441751}{1218492949040} a^{4}$, $\frac{1}{1218492949040} a^{33} + \frac{8698764817}{121849294904} a^{19} - \frac{6626441751}{1218492949040} a^{5}$, $\frac{1}{1218492949040} a^{34} + \frac{8698764817}{121849294904} a^{20} - \frac{6626441751}{1218492949040} a^{6}$, $\frac{1}{1218492949040} a^{35} + \frac{8698764817}{121849294904} a^{21} - \frac{6626441751}{1218492949040} a^{7}$
Class group and class number
$C_{3}\times C_{6}\times C_{78}$, which has order $1404$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11911}{304623237260} a^{29} + \frac{2018324459}{60924647452} a^{15} + \frac{278051973476}{76155809315} a \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 695961018492374.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |