Properties

Label 36.0.807...721.1
Degree $36$
Signature $[0, 18]$
Discriminant $8.073\times 10^{61}$
Root discriminant \(52.44\)
Ramified primes $3,37$
Class number $12996$ (GRH)
Class group [19, 684] (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1)
 
gp: K = bnfinit(y^36 - y^35 + 18*y^34 - 15*y^33 + 185*y^32 - 137*y^31 + 1281*y^30 - 831*y^29 + 6616*y^28 - 3799*y^27 + 26339*y^26 - 13196*y^25 + 83006*y^24 - 36260*y^23 + 208286*y^22 - 77735*y^21 + 418163*y^20 - 132518*y^19 + 666068*y^18 - 173318*y^17 + 834766*y^16 - 177139*y^15 + 804267*y^14 - 129870*y^13 + 582511*y^12 - 73129*y^11 + 302060*y^10 - 23507*y^9 + 107217*y^8 - 7128*y^7 + 23244*y^6 - 78*y^5 + 2775*y^4 - 165*y^3 + 126*y^2 + 9*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1)
 

\( x^{36} - x^{35} + 18 x^{34} - 15 x^{33} + 185 x^{32} - 137 x^{31} + 1281 x^{30} - 831 x^{29} + 6616 x^{28} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(80731161945559438248836517604483794680492496928434000672170721\) \(\medspace = 3^{18}\cdot 37^{34}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(52.44\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}37^{17/18}\approx 52.43726518793858$
Ramified primes:   \(3\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(111=3\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{111}(1,·)$, $\chi_{111}(4,·)$, $\chi_{111}(7,·)$, $\chi_{111}(10,·)$, $\chi_{111}(11,·)$, $\chi_{111}(16,·)$, $\chi_{111}(25,·)$, $\chi_{111}(26,·)$, $\chi_{111}(28,·)$, $\chi_{111}(34,·)$, $\chi_{111}(38,·)$, $\chi_{111}(40,·)$, $\chi_{111}(41,·)$, $\chi_{111}(44,·)$, $\chi_{111}(46,·)$, $\chi_{111}(47,·)$, $\chi_{111}(49,·)$, $\chi_{111}(53,·)$, $\chi_{111}(58,·)$, $\chi_{111}(62,·)$, $\chi_{111}(64,·)$, $\chi_{111}(65,·)$, $\chi_{111}(67,·)$, $\chi_{111}(70,·)$, $\chi_{111}(71,·)$, $\chi_{111}(73,·)$, $\chi_{111}(77,·)$, $\chi_{111}(83,·)$, $\chi_{111}(85,·)$, $\chi_{111}(86,·)$, $\chi_{111}(95,·)$, $\chi_{111}(100,·)$, $\chi_{111}(101,·)$, $\chi_{111}(104,·)$, $\chi_{111}(107,·)$, $\chi_{111}(110,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{73}a^{33}-\frac{6}{73}a^{32}-\frac{7}{73}a^{31}-\frac{23}{73}a^{30}+\frac{3}{73}a^{29}+\frac{1}{73}a^{28}-\frac{19}{73}a^{27}-\frac{12}{73}a^{26}-\frac{25}{73}a^{25}-\frac{15}{73}a^{24}-\frac{1}{73}a^{23}+\frac{25}{73}a^{22}-\frac{18}{73}a^{21}-\frac{15}{73}a^{20}+\frac{6}{73}a^{19}+\frac{28}{73}a^{17}+\frac{8}{73}a^{16}-\frac{31}{73}a^{15}-\frac{14}{73}a^{14}-\frac{30}{73}a^{13}+\frac{32}{73}a^{12}+\frac{22}{73}a^{11}-\frac{27}{73}a^{10}+\frac{27}{73}a^{9}+\frac{23}{73}a^{8}-\frac{11}{73}a^{7}+\frac{33}{73}a^{6}+\frac{17}{73}a^{5}-\frac{34}{73}a^{4}+\frac{23}{73}a^{3}+\frac{8}{73}a^{2}-\frac{10}{73}a-\frac{9}{73}$, $\frac{1}{73}a^{34}+\frac{30}{73}a^{32}+\frac{8}{73}a^{31}+\frac{11}{73}a^{30}+\frac{19}{73}a^{29}-\frac{13}{73}a^{28}+\frac{20}{73}a^{27}-\frac{24}{73}a^{26}-\frac{19}{73}a^{25}-\frac{18}{73}a^{24}+\frac{19}{73}a^{23}-\frac{14}{73}a^{22}+\frac{23}{73}a^{21}-\frac{11}{73}a^{20}+\frac{36}{73}a^{19}+\frac{28}{73}a^{18}+\frac{30}{73}a^{17}+\frac{17}{73}a^{16}+\frac{19}{73}a^{15}+\frac{32}{73}a^{14}-\frac{2}{73}a^{13}-\frac{5}{73}a^{12}+\frac{32}{73}a^{11}+\frac{11}{73}a^{10}-\frac{34}{73}a^{9}-\frac{19}{73}a^{8}-\frac{33}{73}a^{7}-\frac{4}{73}a^{6}-\frac{5}{73}a^{5}-\frac{35}{73}a^{4}-\frac{35}{73}a^{2}+\frac{4}{73}a+\frac{19}{73}$, $\frac{1}{36\!\cdots\!93}a^{35}+\frac{19\!\cdots\!05}{36\!\cdots\!93}a^{34}+\frac{25\!\cdots\!36}{36\!\cdots\!93}a^{33}-\frac{64\!\cdots\!44}{36\!\cdots\!93}a^{32}-\frac{17\!\cdots\!13}{36\!\cdots\!93}a^{31}+\frac{16\!\cdots\!93}{36\!\cdots\!93}a^{30}-\frac{12\!\cdots\!81}{36\!\cdots\!93}a^{29}+\frac{15\!\cdots\!23}{36\!\cdots\!93}a^{28}-\frac{45\!\cdots\!91}{36\!\cdots\!93}a^{27}+\frac{76\!\cdots\!35}{36\!\cdots\!93}a^{26}-\frac{60\!\cdots\!41}{36\!\cdots\!93}a^{25}-\frac{11\!\cdots\!33}{36\!\cdots\!93}a^{24}-\frac{15\!\cdots\!54}{36\!\cdots\!93}a^{23}+\frac{71\!\cdots\!91}{36\!\cdots\!93}a^{22}+\frac{12\!\cdots\!66}{36\!\cdots\!93}a^{21}-\frac{17\!\cdots\!16}{36\!\cdots\!93}a^{20}+\frac{38\!\cdots\!56}{36\!\cdots\!93}a^{19}+\frac{27\!\cdots\!40}{36\!\cdots\!93}a^{18}-\frac{11\!\cdots\!09}{36\!\cdots\!93}a^{17}+\frac{21\!\cdots\!46}{36\!\cdots\!93}a^{16}+\frac{12\!\cdots\!17}{36\!\cdots\!93}a^{15}+\frac{10\!\cdots\!04}{36\!\cdots\!93}a^{14}-\frac{12\!\cdots\!49}{36\!\cdots\!93}a^{13}+\frac{56\!\cdots\!84}{36\!\cdots\!93}a^{12}-\frac{14\!\cdots\!77}{36\!\cdots\!93}a^{11}-\frac{13\!\cdots\!70}{36\!\cdots\!93}a^{10}-\frac{31\!\cdots\!88}{36\!\cdots\!93}a^{9}+\frac{10\!\cdots\!37}{36\!\cdots\!93}a^{8}-\frac{76\!\cdots\!07}{36\!\cdots\!93}a^{7}+\frac{88\!\cdots\!53}{36\!\cdots\!93}a^{6}-\frac{16\!\cdots\!43}{36\!\cdots\!93}a^{5}-\frac{14\!\cdots\!41}{36\!\cdots\!93}a^{4}+\frac{38\!\cdots\!77}{36\!\cdots\!93}a^{3}-\frac{17\!\cdots\!49}{36\!\cdots\!93}a^{2}-\frac{14\!\cdots\!37}{36\!\cdots\!93}a+\frac{14\!\cdots\!95}{36\!\cdots\!93}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{19}\times C_{684}$, which has order $12996$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{34122480476536495885823411117725648848297922887380250870498727234}{365727950135022534390908589813592896926517587901066835721264058193} a^{35} + \frac{35920099990306144158226830773237501966815584652708354942618883933}{365727950135022534390908589813592896926517587901066835721264058193} a^{34} - \frac{615083437181100973102290398099363536394447387659071528670198770753}{365727950135022534390908589813592896926517587901066835721264058193} a^{33} + \frac{543294620918538617109207244987576078895238727979936775551656239507}{365727950135022534390908589813592896926517587901066835721264058193} a^{32} - \frac{6323219576533506173543594384637229613051597192385634606383939877972}{365727950135022534390908589813592896926517587901066835721264058193} a^{31} + \frac{4994028550074475773614939668982845334911542526376809072066813446520}{365727950135022534390908589813592896926517587901066835721264058193} a^{30} - \frac{43789545700798284266678688992786530335633250234760390102543103751356}{365727950135022534390908589813592896926517587901066835721264058193} a^{29} + \frac{30538101137546885171065725683196131944400618465349807317471070295845}{365727950135022534390908589813592896926517587901066835721264058193} a^{28} - \frac{226094852310675109725082640471747046842141478058709699943311770029233}{365727950135022534390908589813592896926517587901066835721264058193} a^{27} + \frac{140802803241538726678484986478660388481558873898343767651597561524073}{365727950135022534390908589813592896926517587901066835721264058193} a^{26} - \frac{899662743420468921090965311067708352400951449363031696002455350422472}{365727950135022534390908589813592896926517587901066835721264058193} a^{25} + \frac{494370034684118631348844025413733664758589959107270464644516063424382}{365727950135022534390908589813592896926517587901066835721264058193} a^{24} - \frac{2832702632307964074097956305645971571255004367493074655008528218257566}{365727950135022534390908589813592896926517587901066835721264058193} a^{23} + \frac{1375361385329746730339724095795553192320654228521346424514192109698348}{365727950135022534390908589813592896926517587901066835721264058193} a^{22} - \frac{7099305470203584634525615669076328860278060023228367082535085912640170}{365727950135022534390908589813592896926517587901066835721264058193} a^{21} + \frac{2996903950309203456086012668935968640961389811412156144802040975546348}{365727950135022534390908589813592896926517587901066835721264058193} a^{20} - \frac{14226830177776055252324451680478952567919670003585093236728241215416985}{365727950135022534390908589813592896926517587901066835721264058193} a^{19} + \frac{5210809126661414118826730544576553890988514785410355002755432457682249}{365727950135022534390908589813592896926517587901066835721264058193} a^{18} - \frac{22605602178149331114252766356866281505343532953417190044279124244844161}{365727950135022534390908589813592896926517587901066835721264058193} a^{17} + \frac{7007791415035400592789121544589243795962853911924902271068832990226289}{365727950135022534390908589813592896926517587901066835721264058193} a^{16} - \frac{28230029416107238778025746906923996814056773011687080990664209928227583}{365727950135022534390908589813592896926517587901066835721264058193} a^{15} + \frac{7416059244792492650399321473801859407320669821663505240054337179613445}{365727950135022534390908589813592896926517587901066835721264058193} a^{14} - \frac{27065934546758807409030469320616305346669578910218733914306996055971366}{365727950135022534390908589813592896926517587901066835721264058193} a^{13} + \frac{5753779239451731686726543155643944040830672515091752316957551478826250}{365727950135022534390908589813592896926517587901066835721264058193} a^{12} - \frac{19456343624872687763264086627413575996271004192247238151574420547824420}{365727950135022534390908589813592896926517587901066835721264058193} a^{11} + \frac{3462966144439364019763530187242271972835021163410861262040525403851913}{365727950135022534390908589813592896926517587901066835721264058193} a^{10} - \frac{9980823467549781215685173095720091111087833315498145689198934890360111}{365727950135022534390908589813592896926517587901066835721264058193} a^{9} + \frac{1307617305524707519457541155870299299414462296446468970040965316641557}{365727950135022534390908589813592896926517587901066835721264058193} a^{8} - \frac{3475551741590602543175147416232313481626086833511671804190450452709766}{365727950135022534390908589813592896926517587901066835721264058193} a^{7} + \frac{431341116566667804301373140731883003832073698261304135400115610321480}{365727950135022534390908589813592896926517587901066835721264058193} a^{6} - \frac{731868384586680047520962298759092079999212586283239884341466674884120}{365727950135022534390908589813592896926517587901066835721264058193} a^{5} + \frac{43979378537352129542691076866218379786253337005261913936392627312728}{365727950135022534390908589813592896926517587901066835721264058193} a^{4} - \frac{80982907038501973778097211728899009297524862646644087808361795677936}{365727950135022534390908589813592896926517587901066835721264058193} a^{3} + \frac{12761208633604858136842663688957528159502826724118708182623353365328}{365727950135022534390908589813592896926517587901066835721264058193} a^{2} - \frac{3288990076144576669983553907357450657151358179358877400431188778463}{365727950135022534390908589813592896926517587901066835721264058193} a + \frac{138091802744566568529774057644096308278359388757109784234311498641}{365727950135022534390908589813592896926517587901066835721264058193} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{19\!\cdots\!41}{36\!\cdots\!93}a^{35}-\frac{18\!\cdots\!45}{36\!\cdots\!93}a^{34}+\frac{34\!\cdots\!49}{36\!\cdots\!93}a^{33}-\frac{38\!\cdots\!78}{50\!\cdots\!41}a^{32}+\frac{35\!\cdots\!35}{36\!\cdots\!93}a^{31}-\frac{25\!\cdots\!48}{36\!\cdots\!93}a^{30}+\frac{24\!\cdots\!62}{36\!\cdots\!93}a^{29}-\frac{15\!\cdots\!29}{36\!\cdots\!93}a^{28}+\frac{12\!\cdots\!65}{36\!\cdots\!93}a^{27}-\frac{68\!\cdots\!37}{36\!\cdots\!93}a^{26}+\frac{50\!\cdots\!57}{36\!\cdots\!93}a^{25}-\frac{23\!\cdots\!05}{36\!\cdots\!93}a^{24}+\frac{15\!\cdots\!34}{36\!\cdots\!93}a^{23}-\frac{64\!\cdots\!86}{36\!\cdots\!93}a^{22}+\frac{39\!\cdots\!52}{36\!\cdots\!93}a^{21}-\frac{13\!\cdots\!56}{36\!\cdots\!93}a^{20}+\frac{78\!\cdots\!40}{36\!\cdots\!93}a^{19}-\frac{22\!\cdots\!67}{36\!\cdots\!93}a^{18}+\frac{12\!\cdots\!20}{36\!\cdots\!93}a^{17}-\frac{29\!\cdots\!90}{36\!\cdots\!93}a^{16}+\frac{15\!\cdots\!03}{36\!\cdots\!93}a^{15}-\frac{29\!\cdots\!93}{36\!\cdots\!93}a^{14}+\frac{14\!\cdots\!89}{36\!\cdots\!93}a^{13}-\frac{20\!\cdots\!72}{36\!\cdots\!93}a^{12}+\frac{10\!\cdots\!91}{36\!\cdots\!93}a^{11}-\frac{11\!\cdots\!70}{36\!\cdots\!93}a^{10}+\frac{51\!\cdots\!93}{36\!\cdots\!93}a^{9}-\frac{39\!\cdots\!85}{36\!\cdots\!93}a^{8}+\frac{17\!\cdots\!92}{36\!\cdots\!93}a^{7}-\frac{15\!\cdots\!46}{36\!\cdots\!93}a^{6}+\frac{35\!\cdots\!72}{36\!\cdots\!93}a^{5}-\frac{15\!\cdots\!18}{36\!\cdots\!93}a^{4}+\frac{39\!\cdots\!16}{36\!\cdots\!93}a^{3}-\frac{73\!\cdots\!98}{36\!\cdots\!93}a^{2}+\frac{16\!\cdots\!06}{36\!\cdots\!93}a+\frac{11\!\cdots\!26}{36\!\cdots\!93}$, $\frac{17\!\cdots\!99}{36\!\cdots\!93}a^{35}-\frac{87\!\cdots\!41}{36\!\cdots\!93}a^{34}+\frac{31\!\cdots\!97}{36\!\cdots\!93}a^{33}-\frac{10\!\cdots\!82}{36\!\cdots\!93}a^{32}+\frac{31\!\cdots\!62}{36\!\cdots\!93}a^{31}-\frac{78\!\cdots\!02}{36\!\cdots\!93}a^{30}+\frac{21\!\cdots\!91}{36\!\cdots\!93}a^{29}-\frac{34\!\cdots\!89}{36\!\cdots\!93}a^{28}+\frac{11\!\cdots\!07}{36\!\cdots\!93}a^{27}-\frac{91\!\cdots\!46}{36\!\cdots\!93}a^{26}+\frac{44\!\cdots\!18}{36\!\cdots\!93}a^{25}-\frac{33\!\cdots\!62}{36\!\cdots\!93}a^{24}+\frac{13\!\cdots\!08}{36\!\cdots\!93}a^{23}+\frac{79\!\cdots\!54}{36\!\cdots\!93}a^{22}+\frac{34\!\cdots\!58}{36\!\cdots\!93}a^{21}+\frac{41\!\cdots\!57}{36\!\cdots\!93}a^{20}+\frac{68\!\cdots\!37}{36\!\cdots\!93}a^{19}+\frac{12\!\cdots\!51}{36\!\cdots\!93}a^{18}+\frac{10\!\cdots\!77}{36\!\cdots\!93}a^{17}+\frac{25\!\cdots\!61}{36\!\cdots\!93}a^{16}+\frac{13\!\cdots\!19}{36\!\cdots\!93}a^{15}+\frac{37\!\cdots\!12}{36\!\cdots\!93}a^{14}+\frac{13\!\cdots\!70}{36\!\cdots\!93}a^{13}+\frac{42\!\cdots\!54}{36\!\cdots\!93}a^{12}+\frac{96\!\cdots\!27}{36\!\cdots\!93}a^{11}+\frac{32\!\cdots\!29}{36\!\cdots\!93}a^{10}+\frac{50\!\cdots\!19}{36\!\cdots\!93}a^{9}+\frac{18\!\cdots\!12}{36\!\cdots\!93}a^{8}+\frac{18\!\cdots\!28}{36\!\cdots\!93}a^{7}+\frac{61\!\cdots\!76}{36\!\cdots\!93}a^{6}+\frac{41\!\cdots\!76}{36\!\cdots\!93}a^{5}+\frac{13\!\cdots\!14}{36\!\cdots\!93}a^{4}+\frac{71\!\cdots\!18}{36\!\cdots\!93}a^{3}+\frac{10\!\cdots\!21}{36\!\cdots\!93}a^{2}+\frac{79\!\cdots\!54}{36\!\cdots\!93}a+\frac{34\!\cdots\!34}{36\!\cdots\!93}$, $\frac{98\!\cdots\!70}{36\!\cdots\!93}a^{35}-\frac{10\!\cdots\!59}{36\!\cdots\!93}a^{34}+\frac{17\!\cdots\!47}{36\!\cdots\!93}a^{33}-\frac{15\!\cdots\!09}{36\!\cdots\!93}a^{32}+\frac{18\!\cdots\!72}{36\!\cdots\!93}a^{31}-\frac{14\!\cdots\!48}{36\!\cdots\!93}a^{30}+\frac{12\!\cdots\!48}{36\!\cdots\!93}a^{29}-\frac{88\!\cdots\!27}{36\!\cdots\!93}a^{28}+\frac{65\!\cdots\!79}{36\!\cdots\!93}a^{27}-\frac{40\!\cdots\!47}{36\!\cdots\!93}a^{26}+\frac{26\!\cdots\!48}{36\!\cdots\!93}a^{25}-\frac{14\!\cdots\!02}{36\!\cdots\!93}a^{24}+\frac{82\!\cdots\!22}{36\!\cdots\!93}a^{23}-\frac{40\!\cdots\!20}{36\!\cdots\!93}a^{22}+\frac{20\!\cdots\!22}{36\!\cdots\!93}a^{21}-\frac{87\!\cdots\!44}{36\!\cdots\!93}a^{20}+\frac{41\!\cdots\!23}{36\!\cdots\!93}a^{19}-\frac{15\!\cdots\!27}{36\!\cdots\!93}a^{18}+\frac{65\!\cdots\!11}{36\!\cdots\!93}a^{17}-\frac{20\!\cdots\!07}{36\!\cdots\!93}a^{16}+\frac{81\!\cdots\!57}{36\!\cdots\!93}a^{15}-\frac{21\!\cdots\!83}{36\!\cdots\!93}a^{14}+\frac{78\!\cdots\!62}{36\!\cdots\!93}a^{13}-\frac{16\!\cdots\!02}{36\!\cdots\!93}a^{12}+\frac{56\!\cdots\!60}{36\!\cdots\!93}a^{11}-\frac{10\!\cdots\!55}{36\!\cdots\!93}a^{10}+\frac{29\!\cdots\!13}{36\!\cdots\!93}a^{9}-\frac{39\!\cdots\!51}{36\!\cdots\!93}a^{8}+\frac{10\!\cdots\!06}{36\!\cdots\!93}a^{7}-\frac{12\!\cdots\!20}{36\!\cdots\!93}a^{6}+\frac{21\!\cdots\!16}{36\!\cdots\!93}a^{5}-\frac{14\!\cdots\!63}{36\!\cdots\!93}a^{4}+\frac{23\!\cdots\!84}{36\!\cdots\!93}a^{3}-\frac{37\!\cdots\!04}{36\!\cdots\!93}a^{2}+\frac{97\!\cdots\!17}{36\!\cdots\!93}a-\frac{40\!\cdots\!27}{36\!\cdots\!93}$, $\frac{54\!\cdots\!70}{36\!\cdots\!93}a^{35}-\frac{27\!\cdots\!64}{36\!\cdots\!93}a^{34}+\frac{94\!\cdots\!08}{36\!\cdots\!93}a^{33}-\frac{34\!\cdots\!15}{36\!\cdots\!93}a^{32}+\frac{96\!\cdots\!04}{36\!\cdots\!93}a^{31}-\frac{25\!\cdots\!24}{36\!\cdots\!93}a^{30}+\frac{65\!\cdots\!94}{36\!\cdots\!93}a^{29}-\frac{11\!\cdots\!40}{36\!\cdots\!93}a^{28}+\frac{33\!\cdots\!20}{36\!\cdots\!93}a^{27}-\frac{35\!\cdots\!58}{36\!\cdots\!93}a^{26}+\frac{13\!\cdots\!36}{36\!\cdots\!93}a^{25}-\frac{41\!\cdots\!40}{36\!\cdots\!93}a^{24}+\frac{41\!\cdots\!48}{36\!\cdots\!93}a^{23}+\frac{14\!\cdots\!96}{36\!\cdots\!93}a^{22}+\frac{10\!\cdots\!04}{36\!\cdots\!93}a^{21}+\frac{10\!\cdots\!50}{36\!\cdots\!93}a^{20}+\frac{20\!\cdots\!00}{36\!\cdots\!93}a^{19}+\frac{32\!\cdots\!52}{36\!\cdots\!93}a^{18}+\frac{33\!\cdots\!60}{36\!\cdots\!93}a^{17}+\frac{69\!\cdots\!28}{36\!\cdots\!93}a^{16}+\frac{41\!\cdots\!56}{36\!\cdots\!93}a^{15}+\frac{10\!\cdots\!34}{36\!\cdots\!93}a^{14}+\frac{40\!\cdots\!08}{36\!\cdots\!93}a^{13}+\frac{11\!\cdots\!24}{36\!\cdots\!93}a^{12}+\frac{29\!\cdots\!42}{36\!\cdots\!93}a^{11}+\frac{92\!\cdots\!12}{36\!\cdots\!93}a^{10}+\frac{15\!\cdots\!08}{36\!\cdots\!93}a^{9}+\frac{52\!\cdots\!98}{36\!\cdots\!93}a^{8}+\frac{57\!\cdots\!28}{36\!\cdots\!93}a^{7}+\frac{17\!\cdots\!12}{36\!\cdots\!93}a^{6}+\frac{12\!\cdots\!45}{36\!\cdots\!93}a^{5}+\frac{39\!\cdots\!48}{36\!\cdots\!93}a^{4}+\frac{21\!\cdots\!04}{36\!\cdots\!93}a^{3}+\frac{29\!\cdots\!98}{36\!\cdots\!93}a^{2}+\frac{13\!\cdots\!20}{36\!\cdots\!93}a+\frac{10\!\cdots\!44}{36\!\cdots\!93}$, $\frac{21\!\cdots\!56}{36\!\cdots\!93}a^{35}-\frac{19\!\cdots\!29}{36\!\cdots\!93}a^{34}+\frac{38\!\cdots\!34}{36\!\cdots\!93}a^{33}-\frac{29\!\cdots\!69}{36\!\cdots\!93}a^{32}+\frac{39\!\cdots\!25}{36\!\cdots\!93}a^{31}-\frac{26\!\cdots\!92}{36\!\cdots\!93}a^{30}+\frac{27\!\cdots\!60}{36\!\cdots\!93}a^{29}-\frac{15\!\cdots\!77}{36\!\cdots\!93}a^{28}+\frac{13\!\cdots\!45}{36\!\cdots\!93}a^{27}-\frac{69\!\cdots\!17}{36\!\cdots\!93}a^{26}+\frac{55\!\cdots\!22}{36\!\cdots\!93}a^{25}-\frac{23\!\cdots\!82}{36\!\cdots\!93}a^{24}+\frac{17\!\cdots\!42}{36\!\cdots\!93}a^{23}-\frac{61\!\cdots\!66}{36\!\cdots\!93}a^{22}+\frac{43\!\cdots\!02}{36\!\cdots\!93}a^{21}-\frac{12\!\cdots\!56}{36\!\cdots\!93}a^{20}+\frac{86\!\cdots\!03}{36\!\cdots\!93}a^{19}-\frac{19\!\cdots\!01}{36\!\cdots\!93}a^{18}+\frac{18\!\cdots\!33}{50\!\cdots\!41}a^{17}-\frac{23\!\cdots\!91}{36\!\cdots\!93}a^{16}+\frac{16\!\cdots\!31}{36\!\cdots\!93}a^{15}-\frac{20\!\cdots\!97}{36\!\cdots\!93}a^{14}+\frac{16\!\cdots\!42}{36\!\cdots\!93}a^{13}-\frac{10\!\cdots\!57}{36\!\cdots\!93}a^{12}+\frac{11\!\cdots\!08}{36\!\cdots\!93}a^{11}-\frac{24\!\cdots\!99}{36\!\cdots\!93}a^{10}+\frac{56\!\cdots\!43}{36\!\cdots\!93}a^{9}+\frac{22\!\cdots\!55}{36\!\cdots\!93}a^{8}+\frac{19\!\cdots\!92}{36\!\cdots\!93}a^{7}+\frac{12\!\cdots\!01}{36\!\cdots\!93}a^{6}+\frac{37\!\cdots\!78}{36\!\cdots\!93}a^{5}+\frac{71\!\cdots\!03}{36\!\cdots\!93}a^{4}+\frac{37\!\cdots\!70}{36\!\cdots\!93}a^{3}+\frac{65\!\cdots\!57}{36\!\cdots\!93}a^{2}+\frac{53\!\cdots\!35}{36\!\cdots\!93}a+\frac{66\!\cdots\!57}{36\!\cdots\!93}$, $\frac{15\!\cdots\!20}{36\!\cdots\!93}a^{35}-\frac{21\!\cdots\!46}{36\!\cdots\!93}a^{34}+\frac{28\!\cdots\!16}{36\!\cdots\!93}a^{33}-\frac{34\!\cdots\!72}{36\!\cdots\!93}a^{32}+\frac{29\!\cdots\!20}{36\!\cdots\!93}a^{31}-\frac{44\!\cdots\!34}{50\!\cdots\!41}a^{30}+\frac{21\!\cdots\!73}{36\!\cdots\!93}a^{29}-\frac{20\!\cdots\!36}{36\!\cdots\!93}a^{28}+\frac{10\!\cdots\!82}{36\!\cdots\!93}a^{27}-\frac{10\!\cdots\!77}{36\!\cdots\!93}a^{26}+\frac{44\!\cdots\!36}{36\!\cdots\!93}a^{25}-\frac{36\!\cdots\!35}{36\!\cdots\!93}a^{24}+\frac{14\!\cdots\!88}{36\!\cdots\!93}a^{23}-\frac{10\!\cdots\!07}{36\!\cdots\!93}a^{22}+\frac{35\!\cdots\!34}{36\!\cdots\!93}a^{21}-\frac{25\!\cdots\!20}{36\!\cdots\!93}a^{20}+\frac{72\!\cdots\!23}{36\!\cdots\!93}a^{19}-\frac{46\!\cdots\!40}{36\!\cdots\!93}a^{18}+\frac{11\!\cdots\!25}{36\!\cdots\!93}a^{17}-\frac{68\!\cdots\!79}{36\!\cdots\!93}a^{16}+\frac{14\!\cdots\!93}{36\!\cdots\!93}a^{15}-\frac{79\!\cdots\!27}{36\!\cdots\!93}a^{14}+\frac{14\!\cdots\!30}{36\!\cdots\!93}a^{13}-\frac{70\!\cdots\!59}{36\!\cdots\!93}a^{12}+\frac{10\!\cdots\!72}{36\!\cdots\!93}a^{11}-\frac{47\!\cdots\!26}{36\!\cdots\!93}a^{10}+\frac{58\!\cdots\!80}{36\!\cdots\!93}a^{9}-\frac{22\!\cdots\!21}{36\!\cdots\!93}a^{8}+\frac{21\!\cdots\!06}{36\!\cdots\!93}a^{7}-\frac{74\!\cdots\!33}{36\!\cdots\!93}a^{6}+\frac{53\!\cdots\!71}{36\!\cdots\!93}a^{5}-\frac{12\!\cdots\!12}{36\!\cdots\!93}a^{4}+\frac{69\!\cdots\!28}{36\!\cdots\!93}a^{3}-\frac{13\!\cdots\!11}{36\!\cdots\!93}a^{2}+\frac{51\!\cdots\!42}{36\!\cdots\!93}a-\frac{14\!\cdots\!25}{36\!\cdots\!93}$, $\frac{68\!\cdots\!68}{36\!\cdots\!93}a^{35}-\frac{71\!\cdots\!66}{36\!\cdots\!93}a^{34}+\frac{12\!\cdots\!06}{36\!\cdots\!93}a^{33}-\frac{10\!\cdots\!14}{36\!\cdots\!93}a^{32}+\frac{12\!\cdots\!44}{36\!\cdots\!93}a^{31}-\frac{99\!\cdots\!40}{36\!\cdots\!93}a^{30}+\frac{87\!\cdots\!12}{36\!\cdots\!93}a^{29}-\frac{61\!\cdots\!90}{36\!\cdots\!93}a^{28}+\frac{45\!\cdots\!66}{36\!\cdots\!93}a^{27}-\frac{28\!\cdots\!46}{36\!\cdots\!93}a^{26}+\frac{17\!\cdots\!44}{36\!\cdots\!93}a^{25}-\frac{98\!\cdots\!64}{36\!\cdots\!93}a^{24}+\frac{56\!\cdots\!32}{36\!\cdots\!93}a^{23}-\frac{27\!\cdots\!96}{36\!\cdots\!93}a^{22}+\frac{14\!\cdots\!40}{36\!\cdots\!93}a^{21}-\frac{59\!\cdots\!96}{36\!\cdots\!93}a^{20}+\frac{28\!\cdots\!70}{36\!\cdots\!93}a^{19}-\frac{10\!\cdots\!98}{36\!\cdots\!93}a^{18}+\frac{45\!\cdots\!22}{36\!\cdots\!93}a^{17}-\frac{14\!\cdots\!78}{36\!\cdots\!93}a^{16}+\frac{56\!\cdots\!66}{36\!\cdots\!93}a^{15}-\frac{14\!\cdots\!90}{36\!\cdots\!93}a^{14}+\frac{54\!\cdots\!32}{36\!\cdots\!93}a^{13}-\frac{11\!\cdots\!00}{36\!\cdots\!93}a^{12}+\frac{38\!\cdots\!40}{36\!\cdots\!93}a^{11}-\frac{69\!\cdots\!26}{36\!\cdots\!93}a^{10}+\frac{19\!\cdots\!22}{36\!\cdots\!93}a^{9}-\frac{26\!\cdots\!14}{36\!\cdots\!93}a^{8}+\frac{69\!\cdots\!32}{36\!\cdots\!93}a^{7}-\frac{86\!\cdots\!60}{36\!\cdots\!93}a^{6}+\frac{14\!\cdots\!40}{36\!\cdots\!93}a^{5}-\frac{87\!\cdots\!56}{36\!\cdots\!93}a^{4}+\frac{16\!\cdots\!72}{36\!\cdots\!93}a^{3}-\frac{25\!\cdots\!63}{36\!\cdots\!93}a^{2}+\frac{65\!\cdots\!26}{36\!\cdots\!93}a+\frac{45\!\cdots\!04}{36\!\cdots\!93}$, $\frac{36\!\cdots\!18}{36\!\cdots\!93}a^{35}-\frac{88\!\cdots\!78}{36\!\cdots\!93}a^{34}+\frac{71\!\cdots\!62}{36\!\cdots\!93}a^{33}-\frac{14\!\cdots\!31}{36\!\cdots\!93}a^{32}+\frac{76\!\cdots\!32}{36\!\cdots\!93}a^{31}-\frac{14\!\cdots\!06}{36\!\cdots\!93}a^{30}+\frac{55\!\cdots\!65}{36\!\cdots\!93}a^{29}-\frac{96\!\cdots\!92}{36\!\cdots\!93}a^{28}+\frac{29\!\cdots\!71}{36\!\cdots\!93}a^{27}-\frac{47\!\cdots\!80}{36\!\cdots\!93}a^{26}+\frac{11\!\cdots\!19}{36\!\cdots\!93}a^{25}-\frac{18\!\cdots\!64}{36\!\cdots\!93}a^{24}+\frac{38\!\cdots\!76}{36\!\cdots\!93}a^{23}-\frac{55\!\cdots\!27}{36\!\cdots\!93}a^{22}+\frac{98\!\cdots\!34}{36\!\cdots\!93}a^{21}-\frac{13\!\cdots\!39}{36\!\cdots\!93}a^{20}+\frac{20\!\cdots\!02}{36\!\cdots\!93}a^{19}-\frac{25\!\cdots\!73}{36\!\cdots\!93}a^{18}+\frac{33\!\cdots\!23}{36\!\cdots\!93}a^{17}-\frac{38\!\cdots\!73}{36\!\cdots\!93}a^{16}+\frac{42\!\cdots\!13}{36\!\cdots\!93}a^{15}-\frac{46\!\cdots\!62}{36\!\cdots\!93}a^{14}+\frac{42\!\cdots\!74}{36\!\cdots\!93}a^{13}-\frac{42\!\cdots\!08}{36\!\cdots\!93}a^{12}+\frac{31\!\cdots\!55}{36\!\cdots\!93}a^{11}-\frac{28\!\cdots\!04}{36\!\cdots\!93}a^{10}+\frac{17\!\cdots\!59}{36\!\cdots\!93}a^{9}-\frac{13\!\cdots\!61}{36\!\cdots\!93}a^{8}+\frac{67\!\cdots\!14}{36\!\cdots\!93}a^{7}-\frac{43\!\cdots\!94}{36\!\cdots\!93}a^{6}+\frac{19\!\cdots\!47}{36\!\cdots\!93}a^{5}-\frac{73\!\cdots\!70}{36\!\cdots\!93}a^{4}+\frac{28\!\cdots\!73}{36\!\cdots\!93}a^{3}-\frac{65\!\cdots\!36}{36\!\cdots\!93}a^{2}+\frac{40\!\cdots\!06}{36\!\cdots\!93}a-\frac{63\!\cdots\!30}{36\!\cdots\!93}$, $\frac{84\!\cdots\!72}{36\!\cdots\!93}a^{35}-\frac{82\!\cdots\!32}{36\!\cdots\!93}a^{34}+\frac{15\!\cdots\!86}{36\!\cdots\!93}a^{33}-\frac{12\!\cdots\!52}{36\!\cdots\!93}a^{32}+\frac{21\!\cdots\!96}{50\!\cdots\!41}a^{31}-\frac{10\!\cdots\!32}{36\!\cdots\!93}a^{30}+\frac{10\!\cdots\!40}{36\!\cdots\!93}a^{29}-\frac{65\!\cdots\!84}{36\!\cdots\!93}a^{28}+\frac{54\!\cdots\!92}{36\!\cdots\!93}a^{27}-\frac{29\!\cdots\!20}{36\!\cdots\!93}a^{26}+\frac{21\!\cdots\!44}{36\!\cdots\!93}a^{25}-\frac{10\!\cdots\!44}{36\!\cdots\!93}a^{24}+\frac{67\!\cdots\!24}{36\!\cdots\!93}a^{23}-\frac{27\!\cdots\!48}{36\!\cdots\!93}a^{22}+\frac{16\!\cdots\!24}{36\!\cdots\!93}a^{21}-\frac{56\!\cdots\!60}{36\!\cdots\!93}a^{20}+\frac{33\!\cdots\!08}{36\!\cdots\!93}a^{19}-\frac{93\!\cdots\!60}{36\!\cdots\!93}a^{18}+\frac{52\!\cdots\!84}{36\!\cdots\!93}a^{17}-\frac{11\!\cdots\!64}{36\!\cdots\!93}a^{16}+\frac{64\!\cdots\!00}{36\!\cdots\!93}a^{15}-\frac{10\!\cdots\!88}{36\!\cdots\!93}a^{14}+\frac{60\!\cdots\!72}{36\!\cdots\!93}a^{13}-\frac{68\!\cdots\!72}{36\!\cdots\!93}a^{12}+\frac{42\!\cdots\!52}{36\!\cdots\!93}a^{11}-\frac{30\!\cdots\!84}{36\!\cdots\!93}a^{10}+\frac{21\!\cdots\!88}{36\!\cdots\!93}a^{9}-\frac{21\!\cdots\!32}{36\!\cdots\!93}a^{8}+\frac{69\!\cdots\!48}{36\!\cdots\!93}a^{7}+\frac{55\!\cdots\!37}{36\!\cdots\!93}a^{6}+\frac{13\!\cdots\!60}{36\!\cdots\!93}a^{5}+\frac{21\!\cdots\!80}{36\!\cdots\!93}a^{4}+\frac{12\!\cdots\!40}{36\!\cdots\!93}a^{3}+\frac{21\!\cdots\!16}{36\!\cdots\!93}a^{2}+\frac{17\!\cdots\!40}{36\!\cdots\!93}a+\frac{14\!\cdots\!44}{36\!\cdots\!93}$, $\frac{40\!\cdots\!77}{36\!\cdots\!93}a^{35}+\frac{60\!\cdots\!75}{36\!\cdots\!93}a^{34}+\frac{65\!\cdots\!95}{36\!\cdots\!93}a^{33}+\frac{25\!\cdots\!64}{36\!\cdots\!93}a^{32}+\frac{63\!\cdots\!62}{36\!\cdots\!93}a^{31}+\frac{33\!\cdots\!34}{36\!\cdots\!93}a^{30}+\frac{40\!\cdots\!32}{36\!\cdots\!93}a^{29}+\frac{28\!\cdots\!67}{36\!\cdots\!93}a^{28}+\frac{19\!\cdots\!13}{36\!\cdots\!93}a^{27}+\frac{17\!\cdots\!83}{36\!\cdots\!93}a^{26}+\frac{72\!\cdots\!23}{36\!\cdots\!93}a^{25}+\frac{77\!\cdots\!89}{36\!\cdots\!93}a^{24}+\frac{21\!\cdots\!42}{36\!\cdots\!93}a^{23}+\frac{36\!\cdots\!43}{50\!\cdots\!41}a^{22}+\frac{47\!\cdots\!55}{36\!\cdots\!93}a^{21}+\frac{99\!\cdots\!15}{50\!\cdots\!41}a^{20}+\frac{83\!\cdots\!80}{36\!\cdots\!93}a^{19}+\frac{15\!\cdots\!45}{36\!\cdots\!93}a^{18}+\frac{10\!\cdots\!67}{36\!\cdots\!93}a^{17}+\frac{26\!\cdots\!17}{36\!\cdots\!93}a^{16}+\frac{10\!\cdots\!90}{36\!\cdots\!93}a^{15}+\frac{34\!\cdots\!58}{36\!\cdots\!93}a^{14}+\frac{54\!\cdots\!23}{36\!\cdots\!93}a^{13}+\frac{35\!\cdots\!24}{36\!\cdots\!93}a^{12}-\frac{15\!\cdots\!43}{36\!\cdots\!93}a^{11}+\frac{26\!\cdots\!05}{36\!\cdots\!93}a^{10}-\frac{35\!\cdots\!34}{36\!\cdots\!93}a^{9}+\frac{14\!\cdots\!68}{36\!\cdots\!93}a^{8}-\frac{27\!\cdots\!37}{36\!\cdots\!93}a^{7}+\frac{48\!\cdots\!57}{36\!\cdots\!93}a^{6}-\frac{13\!\cdots\!86}{36\!\cdots\!93}a^{5}+\frac{10\!\cdots\!55}{36\!\cdots\!93}a^{4}-\frac{25\!\cdots\!90}{36\!\cdots\!93}a^{3}+\frac{69\!\cdots\!64}{36\!\cdots\!93}a^{2}-\frac{48\!\cdots\!02}{36\!\cdots\!93}a+\frac{64\!\cdots\!80}{36\!\cdots\!93}$, $\frac{20\!\cdots\!35}{36\!\cdots\!93}a^{35}-\frac{25\!\cdots\!99}{36\!\cdots\!93}a^{34}+\frac{37\!\cdots\!92}{36\!\cdots\!93}a^{33}-\frac{40\!\cdots\!29}{36\!\cdots\!93}a^{32}+\frac{38\!\cdots\!06}{36\!\cdots\!93}a^{31}-\frac{37\!\cdots\!12}{36\!\cdots\!93}a^{30}+\frac{26\!\cdots\!19}{36\!\cdots\!93}a^{29}-\frac{23\!\cdots\!80}{36\!\cdots\!93}a^{28}+\frac{13\!\cdots\!26}{36\!\cdots\!93}a^{27}-\frac{11\!\cdots\!00}{36\!\cdots\!93}a^{26}+\frac{55\!\cdots\!22}{36\!\cdots\!93}a^{25}-\frac{40\!\cdots\!71}{36\!\cdots\!93}a^{24}+\frac{17\!\cdots\!14}{36\!\cdots\!93}a^{23}-\frac{11\!\cdots\!57}{36\!\cdots\!93}a^{22}+\frac{44\!\cdots\!41}{36\!\cdots\!93}a^{21}-\frac{36\!\cdots\!65}{50\!\cdots\!41}a^{20}+\frac{89\!\cdots\!09}{36\!\cdots\!93}a^{19}-\frac{48\!\cdots\!50}{36\!\cdots\!93}a^{18}+\frac{14\!\cdots\!53}{36\!\cdots\!93}a^{17}-\frac{69\!\cdots\!32}{36\!\cdots\!93}a^{16}+\frac{17\!\cdots\!81}{36\!\cdots\!93}a^{15}-\frac{78\!\cdots\!96}{36\!\cdots\!93}a^{14}+\frac{17\!\cdots\!91}{36\!\cdots\!93}a^{13}-\frac{66\!\cdots\!61}{36\!\cdots\!93}a^{12}+\frac{12\!\cdots\!71}{36\!\cdots\!93}a^{11}-\frac{43\!\cdots\!78}{36\!\cdots\!93}a^{10}+\frac{63\!\cdots\!76}{36\!\cdots\!93}a^{9}-\frac{19\!\cdots\!41}{36\!\cdots\!93}a^{8}+\frac{21\!\cdots\!41}{36\!\cdots\!93}a^{7}-\frac{62\!\cdots\!71}{36\!\cdots\!93}a^{6}+\frac{46\!\cdots\!33}{36\!\cdots\!93}a^{5}-\frac{92\!\cdots\!60}{36\!\cdots\!93}a^{4}+\frac{41\!\cdots\!39}{36\!\cdots\!93}a^{3}-\frac{88\!\cdots\!32}{36\!\cdots\!93}a^{2}+\frac{10\!\cdots\!50}{36\!\cdots\!93}a+\frac{60\!\cdots\!31}{36\!\cdots\!93}$, $\frac{34\!\cdots\!07}{36\!\cdots\!93}a^{35}-\frac{88\!\cdots\!17}{36\!\cdots\!93}a^{34}+\frac{69\!\cdots\!58}{36\!\cdots\!93}a^{33}-\frac{15\!\cdots\!84}{36\!\cdots\!93}a^{32}+\frac{74\!\cdots\!14}{36\!\cdots\!93}a^{31}-\frac{14\!\cdots\!44}{36\!\cdots\!93}a^{30}+\frac{53\!\cdots\!04}{36\!\cdots\!93}a^{29}-\frac{99\!\cdots\!06}{36\!\cdots\!93}a^{28}+\frac{28\!\cdots\!32}{36\!\cdots\!93}a^{27}-\frac{49\!\cdots\!74}{36\!\cdots\!93}a^{26}+\frac{11\!\cdots\!16}{36\!\cdots\!93}a^{25}-\frac{19\!\cdots\!65}{36\!\cdots\!93}a^{24}+\frac{38\!\cdots\!25}{36\!\cdots\!93}a^{23}-\frac{58\!\cdots\!03}{36\!\cdots\!93}a^{22}+\frac{99\!\cdots\!13}{36\!\cdots\!93}a^{21}-\frac{14\!\cdots\!27}{36\!\cdots\!93}a^{20}+\frac{20\!\cdots\!33}{36\!\cdots\!93}a^{19}-\frac{27\!\cdots\!26}{36\!\cdots\!93}a^{18}+\frac{33\!\cdots\!84}{36\!\cdots\!93}a^{17}-\frac{42\!\cdots\!88}{36\!\cdots\!93}a^{16}+\frac{43\!\cdots\!61}{36\!\cdots\!93}a^{15}-\frac{51\!\cdots\!16}{36\!\cdots\!93}a^{14}+\frac{43\!\cdots\!43}{36\!\cdots\!93}a^{13}-\frac{47\!\cdots\!89}{36\!\cdots\!93}a^{12}+\frac{32\!\cdots\!31}{36\!\cdots\!93}a^{11}-\frac{32\!\cdots\!24}{36\!\cdots\!93}a^{10}+\frac{17\!\cdots\!72}{36\!\cdots\!93}a^{9}-\frac{15\!\cdots\!78}{36\!\cdots\!93}a^{8}+\frac{59\!\cdots\!37}{36\!\cdots\!93}a^{7}-\frac{50\!\cdots\!85}{36\!\cdots\!93}a^{6}+\frac{12\!\cdots\!30}{36\!\cdots\!93}a^{5}-\frac{86\!\cdots\!02}{36\!\cdots\!93}a^{4}+\frac{25\!\cdots\!79}{36\!\cdots\!93}a^{3}-\frac{35\!\cdots\!52}{36\!\cdots\!93}a^{2}-\frac{62\!\cdots\!00}{36\!\cdots\!93}a-\frac{59\!\cdots\!35}{36\!\cdots\!93}$, $\frac{66\!\cdots\!07}{36\!\cdots\!93}a^{35}-\frac{50\!\cdots\!06}{36\!\cdots\!93}a^{34}+\frac{11\!\cdots\!50}{36\!\cdots\!93}a^{33}-\frac{71\!\cdots\!98}{36\!\cdots\!93}a^{32}+\frac{12\!\cdots\!49}{36\!\cdots\!93}a^{31}-\frac{62\!\cdots\!81}{36\!\cdots\!93}a^{30}+\frac{85\!\cdots\!80}{36\!\cdots\!93}a^{29}-\frac{35\!\cdots\!75}{36\!\cdots\!93}a^{28}+\frac{44\!\cdots\!22}{36\!\cdots\!93}a^{27}-\frac{14\!\cdots\!89}{36\!\cdots\!93}a^{26}+\frac{17\!\cdots\!62}{36\!\cdots\!93}a^{25}-\frac{45\!\cdots\!94}{36\!\cdots\!93}a^{24}+\frac{56\!\cdots\!25}{36\!\cdots\!93}a^{23}-\frac{10\!\cdots\!10}{36\!\cdots\!93}a^{22}+\frac{14\!\cdots\!73}{36\!\cdots\!93}a^{21}-\frac{17\!\cdots\!27}{36\!\cdots\!93}a^{20}+\frac{29\!\cdots\!87}{36\!\cdots\!93}a^{19}-\frac{18\!\cdots\!07}{36\!\cdots\!93}a^{18}+\frac{47\!\cdots\!07}{36\!\cdots\!93}a^{17}-\frac{92\!\cdots\!23}{36\!\cdots\!93}a^{16}+\frac{60\!\cdots\!52}{36\!\cdots\!93}a^{15}+\frac{31\!\cdots\!27}{36\!\cdots\!93}a^{14}+\frac{60\!\cdots\!26}{36\!\cdots\!93}a^{13}+\frac{65\!\cdots\!47}{36\!\cdots\!93}a^{12}+\frac{46\!\cdots\!78}{36\!\cdots\!93}a^{11}+\frac{69\!\cdots\!67}{36\!\cdots\!93}a^{10}+\frac{26\!\cdots\!91}{36\!\cdots\!93}a^{9}+\frac{51\!\cdots\!11}{36\!\cdots\!93}a^{8}+\frac{10\!\cdots\!26}{36\!\cdots\!93}a^{7}+\frac{21\!\cdots\!92}{36\!\cdots\!93}a^{6}+\frac{27\!\cdots\!10}{36\!\cdots\!93}a^{5}+\frac{61\!\cdots\!01}{36\!\cdots\!93}a^{4}+\frac{41\!\cdots\!20}{36\!\cdots\!93}a^{3}+\frac{43\!\cdots\!55}{36\!\cdots\!93}a^{2}+\frac{24\!\cdots\!74}{36\!\cdots\!93}a+\frac{18\!\cdots\!69}{36\!\cdots\!93}$, $\frac{38\!\cdots\!34}{36\!\cdots\!93}a^{35}-\frac{41\!\cdots\!03}{36\!\cdots\!93}a^{34}+\frac{69\!\cdots\!58}{36\!\cdots\!93}a^{33}-\frac{63\!\cdots\!97}{36\!\cdots\!93}a^{32}+\frac{71\!\cdots\!57}{36\!\cdots\!93}a^{31}-\frac{58\!\cdots\!15}{36\!\cdots\!93}a^{30}+\frac{49\!\cdots\!66}{36\!\cdots\!93}a^{29}-\frac{35\!\cdots\!20}{36\!\cdots\!93}a^{28}+\frac{25\!\cdots\!03}{36\!\cdots\!93}a^{27}-\frac{16\!\cdots\!71}{36\!\cdots\!93}a^{26}+\frac{10\!\cdots\!27}{36\!\cdots\!93}a^{25}-\frac{58\!\cdots\!67}{36\!\cdots\!93}a^{24}+\frac{32\!\cdots\!61}{36\!\cdots\!93}a^{23}-\frac{16\!\cdots\!08}{36\!\cdots\!93}a^{22}+\frac{81\!\cdots\!65}{36\!\cdots\!93}a^{21}-\frac{35\!\cdots\!53}{36\!\cdots\!93}a^{20}+\frac{16\!\cdots\!35}{36\!\cdots\!93}a^{19}-\frac{62\!\cdots\!34}{36\!\cdots\!93}a^{18}+\frac{25\!\cdots\!61}{36\!\cdots\!93}a^{17}-\frac{85\!\cdots\!49}{36\!\cdots\!93}a^{16}+\frac{32\!\cdots\!23}{36\!\cdots\!93}a^{15}-\frac{90\!\cdots\!50}{36\!\cdots\!93}a^{14}+\frac{31\!\cdots\!11}{36\!\cdots\!93}a^{13}-\frac{71\!\cdots\!65}{36\!\cdots\!93}a^{12}+\frac{22\!\cdots\!50}{36\!\cdots\!93}a^{11}-\frac{43\!\cdots\!43}{36\!\cdots\!93}a^{10}+\frac{11\!\cdots\!76}{36\!\cdots\!93}a^{9}-\frac{16\!\cdots\!52}{36\!\cdots\!93}a^{8}+\frac{40\!\cdots\!66}{36\!\cdots\!93}a^{7}-\frac{53\!\cdots\!45}{36\!\cdots\!93}a^{6}+\frac{86\!\cdots\!80}{36\!\cdots\!93}a^{5}-\frac{54\!\cdots\!73}{36\!\cdots\!93}a^{4}+\frac{94\!\cdots\!86}{36\!\cdots\!93}a^{3}-\frac{13\!\cdots\!83}{36\!\cdots\!93}a^{2}+\frac{38\!\cdots\!88}{36\!\cdots\!93}a+\frac{26\!\cdots\!12}{36\!\cdots\!93}$, $\frac{45\!\cdots\!52}{36\!\cdots\!93}a^{35}-\frac{46\!\cdots\!96}{36\!\cdots\!93}a^{34}+\frac{81\!\cdots\!13}{36\!\cdots\!93}a^{33}-\frac{70\!\cdots\!34}{36\!\cdots\!93}a^{32}+\frac{84\!\cdots\!72}{36\!\cdots\!93}a^{31}-\frac{65\!\cdots\!53}{36\!\cdots\!93}a^{30}+\frac{58\!\cdots\!77}{36\!\cdots\!93}a^{29}-\frac{39\!\cdots\!12}{36\!\cdots\!93}a^{28}+\frac{30\!\cdots\!59}{36\!\cdots\!93}a^{27}-\frac{18\!\cdots\!32}{36\!\cdots\!93}a^{26}+\frac{12\!\cdots\!26}{36\!\cdots\!93}a^{25}-\frac{64\!\cdots\!42}{36\!\cdots\!93}a^{24}+\frac{37\!\cdots\!51}{36\!\cdots\!93}a^{23}-\frac{17\!\cdots\!78}{36\!\cdots\!93}a^{22}+\frac{95\!\cdots\!63}{36\!\cdots\!93}a^{21}-\frac{39\!\cdots\!26}{36\!\cdots\!93}a^{20}+\frac{19\!\cdots\!12}{36\!\cdots\!93}a^{19}-\frac{68\!\cdots\!90}{36\!\cdots\!93}a^{18}+\frac{30\!\cdots\!21}{36\!\cdots\!93}a^{17}-\frac{92\!\cdots\!48}{36\!\cdots\!93}a^{16}+\frac{38\!\cdots\!93}{36\!\cdots\!93}a^{15}-\frac{98\!\cdots\!85}{36\!\cdots\!93}a^{14}+\frac{37\!\cdots\!60}{36\!\cdots\!93}a^{13}-\frac{77\!\cdots\!55}{36\!\cdots\!93}a^{12}+\frac{26\!\cdots\!22}{36\!\cdots\!93}a^{11}-\frac{47\!\cdots\!17}{36\!\cdots\!93}a^{10}+\frac{13\!\cdots\!13}{36\!\cdots\!93}a^{9}-\frac{19\!\cdots\!95}{36\!\cdots\!93}a^{8}+\frac{49\!\cdots\!04}{36\!\cdots\!93}a^{7}-\frac{66\!\cdots\!51}{36\!\cdots\!93}a^{6}+\frac{10\!\cdots\!55}{36\!\cdots\!93}a^{5}-\frac{94\!\cdots\!58}{36\!\cdots\!93}a^{4}+\frac{11\!\cdots\!87}{36\!\cdots\!93}a^{3}-\frac{19\!\cdots\!75}{36\!\cdots\!93}a^{2}+\frac{31\!\cdots\!74}{36\!\cdots\!93}a-\frac{20\!\cdots\!14}{36\!\cdots\!93}$, $\frac{16\!\cdots\!22}{36\!\cdots\!93}a^{35}-\frac{17\!\cdots\!98}{36\!\cdots\!93}a^{34}+\frac{30\!\cdots\!15}{36\!\cdots\!93}a^{33}-\frac{26\!\cdots\!26}{36\!\cdots\!93}a^{32}+\frac{31\!\cdots\!47}{36\!\cdots\!93}a^{31}-\frac{24\!\cdots\!28}{36\!\cdots\!93}a^{30}+\frac{21\!\cdots\!10}{36\!\cdots\!93}a^{29}-\frac{15\!\cdots\!30}{36\!\cdots\!93}a^{28}+\frac{11\!\cdots\!80}{36\!\cdots\!93}a^{27}-\frac{69\!\cdots\!86}{36\!\cdots\!93}a^{26}+\frac{44\!\cdots\!50}{36\!\cdots\!93}a^{25}-\frac{24\!\cdots\!08}{36\!\cdots\!93}a^{24}+\frac{13\!\cdots\!80}{36\!\cdots\!93}a^{23}-\frac{67\!\cdots\!48}{36\!\cdots\!93}a^{22}+\frac{35\!\cdots\!40}{36\!\cdots\!93}a^{21}-\frac{14\!\cdots\!62}{36\!\cdots\!93}a^{20}+\frac{70\!\cdots\!02}{36\!\cdots\!93}a^{19}-\frac{25\!\cdots\!64}{36\!\cdots\!93}a^{18}+\frac{11\!\cdots\!48}{36\!\cdots\!93}a^{17}-\frac{34\!\cdots\!84}{36\!\cdots\!93}a^{16}+\frac{13\!\cdots\!04}{36\!\cdots\!93}a^{15}-\frac{36\!\cdots\!54}{36\!\cdots\!93}a^{14}+\frac{13\!\cdots\!62}{36\!\cdots\!93}a^{13}-\frac{28\!\cdots\!20}{36\!\cdots\!93}a^{12}+\frac{96\!\cdots\!26}{36\!\cdots\!93}a^{11}-\frac{17\!\cdots\!58}{36\!\cdots\!93}a^{10}+\frac{49\!\cdots\!20}{36\!\cdots\!93}a^{9}-\frac{64\!\cdots\!67}{36\!\cdots\!93}a^{8}+\frac{17\!\cdots\!94}{36\!\cdots\!93}a^{7}-\frac{21\!\cdots\!47}{36\!\cdots\!93}a^{6}+\frac{36\!\cdots\!80}{36\!\cdots\!93}a^{5}-\frac{21\!\cdots\!24}{36\!\cdots\!93}a^{4}+\frac{40\!\cdots\!84}{36\!\cdots\!93}a^{3}-\frac{56\!\cdots\!47}{36\!\cdots\!93}a^{2}+\frac{16\!\cdots\!24}{36\!\cdots\!93}a+\frac{11\!\cdots\!47}{36\!\cdots\!93}$, $\frac{10\!\cdots\!37}{36\!\cdots\!93}a^{35}-\frac{16\!\cdots\!70}{36\!\cdots\!93}a^{34}+\frac{19\!\cdots\!26}{36\!\cdots\!93}a^{33}-\frac{26\!\cdots\!69}{36\!\cdots\!93}a^{32}+\frac{20\!\cdots\!88}{36\!\cdots\!93}a^{31}-\frac{25\!\cdots\!36}{36\!\cdots\!93}a^{30}+\frac{14\!\cdots\!16}{36\!\cdots\!93}a^{29}-\frac{16\!\cdots\!01}{36\!\cdots\!93}a^{28}+\frac{74\!\cdots\!88}{36\!\cdots\!93}a^{27}-\frac{81\!\cdots\!28}{36\!\cdots\!93}a^{26}+\frac{30\!\cdots\!46}{36\!\cdots\!93}a^{25}-\frac{30\!\cdots\!05}{36\!\cdots\!93}a^{24}+\frac{96\!\cdots\!42}{36\!\cdots\!93}a^{23}-\frac{89\!\cdots\!59}{36\!\cdots\!93}a^{22}+\frac{24\!\cdots\!89}{36\!\cdots\!93}a^{21}-\frac{21\!\cdots\!99}{36\!\cdots\!93}a^{20}+\frac{49\!\cdots\!11}{36\!\cdots\!93}a^{19}-\frac{39\!\cdots\!80}{36\!\cdots\!93}a^{18}+\frac{80\!\cdots\!00}{36\!\cdots\!93}a^{17}-\frac{59\!\cdots\!28}{36\!\cdots\!93}a^{16}+\frac{10\!\cdots\!63}{36\!\cdots\!93}a^{15}-\frac{70\!\cdots\!77}{36\!\cdots\!93}a^{14}+\frac{10\!\cdots\!97}{36\!\cdots\!93}a^{13}-\frac{62\!\cdots\!34}{36\!\cdots\!93}a^{12}+\frac{76\!\cdots\!35}{36\!\cdots\!93}a^{11}-\frac{42\!\cdots\!64}{36\!\cdots\!93}a^{10}+\frac{41\!\cdots\!29}{36\!\cdots\!93}a^{9}-\frac{20\!\cdots\!79}{36\!\cdots\!93}a^{8}+\frac{15\!\cdots\!19}{36\!\cdots\!93}a^{7}-\frac{66\!\cdots\!77}{36\!\cdots\!93}a^{6}+\frac{40\!\cdots\!22}{36\!\cdots\!93}a^{5}-\frac{11\!\cdots\!94}{36\!\cdots\!93}a^{4}+\frac{74\!\cdots\!92}{50\!\cdots\!41}a^{3}-\frac{11\!\cdots\!20}{36\!\cdots\!93}a^{2}+\frac{48\!\cdots\!89}{36\!\cdots\!93}a-\frac{11\!\cdots\!17}{36\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 3171872728760.222 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 3171872728760.222 \cdot 12996}{6\cdot\sqrt{80731161945559438248836517604483794680492496928434000672170721}}\cr\approx \mathstrut & 0.178111201810241 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{18}$ (as 36T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-111}) \), 3.3.1369.1, \(\Q(\sqrt{-3}, \sqrt{37})\), 6.0.50602347.1, 6.6.69343957.1, 6.0.1872286839.1, 9.9.3512479453921.1, 12.0.3505458007492611921.1, 18.0.242839247007536485508643885603.1, \(\Q(\zeta_{37})^+\), 18.0.8985052139278849963819823767311.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $18^{2}$ R $18^{2}$ ${\href{/padicField/7.9.0.1}{9} }^{4}$ ${\href{/padicField/11.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.2.0.1}{2} }^{18}$ R $18^{2}$ ${\href{/padicField/43.2.0.1}{2} }^{18}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $18$$2$$9$$9$
Deg $18$$2$$9$$9$
\(37\) Copy content Toggle raw display 37.18.17.1$x^{18} + 37$$18$$1$$17$$C_{18}$$[\ ]_{18}$
37.18.17.1$x^{18} + 37$$18$$1$$17$$C_{18}$$[\ ]_{18}$