Properties

Label 36.0.80731161945...0721.1
Degree $36$
Signature $[0, 18]$
Discriminant $3^{18}\cdot 37^{34}$
Root discriminant $52.44$
Ramified primes $3, 37$
Class number $12996$ (GRH)
Class group $[19, 684]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 9, 126, -165, 2775, -78, 23244, -7128, 107217, -23507, 302060, -73129, 582511, -129870, 804267, -177139, 834766, -173318, 666068, -132518, 418163, -77735, 208286, -36260, 83006, -13196, 26339, -3799, 6616, -831, 1281, -137, 185, -15, 18, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1)
 
gp: K = bnfinit(x^36 - x^35 + 18*x^34 - 15*x^33 + 185*x^32 - 137*x^31 + 1281*x^30 - 831*x^29 + 6616*x^28 - 3799*x^27 + 26339*x^26 - 13196*x^25 + 83006*x^24 - 36260*x^23 + 208286*x^22 - 77735*x^21 + 418163*x^20 - 132518*x^19 + 666068*x^18 - 173318*x^17 + 834766*x^16 - 177139*x^15 + 804267*x^14 - 129870*x^13 + 582511*x^12 - 73129*x^11 + 302060*x^10 - 23507*x^9 + 107217*x^8 - 7128*x^7 + 23244*x^6 - 78*x^5 + 2775*x^4 - 165*x^3 + 126*x^2 + 9*x + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{35} + 18 x^{34} - 15 x^{33} + 185 x^{32} - 137 x^{31} + 1281 x^{30} - 831 x^{29} + 6616 x^{28} - 3799 x^{27} + 26339 x^{26} - 13196 x^{25} + 83006 x^{24} - 36260 x^{23} + 208286 x^{22} - 77735 x^{21} + 418163 x^{20} - 132518 x^{19} + 666068 x^{18} - 173318 x^{17} + 834766 x^{16} - 177139 x^{15} + 804267 x^{14} - 129870 x^{13} + 582511 x^{12} - 73129 x^{11} + 302060 x^{10} - 23507 x^{9} + 107217 x^{8} - 7128 x^{7} + 23244 x^{6} - 78 x^{5} + 2775 x^{4} - 165 x^{3} + 126 x^{2} + 9 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(80731161945559438248836517604483794680492496928434000672170721=3^{18}\cdot 37^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $52.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(111=3\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{111}(1,·)$, $\chi_{111}(4,·)$, $\chi_{111}(7,·)$, $\chi_{111}(10,·)$, $\chi_{111}(11,·)$, $\chi_{111}(16,·)$, $\chi_{111}(25,·)$, $\chi_{111}(26,·)$, $\chi_{111}(28,·)$, $\chi_{111}(34,·)$, $\chi_{111}(38,·)$, $\chi_{111}(40,·)$, $\chi_{111}(41,·)$, $\chi_{111}(44,·)$, $\chi_{111}(46,·)$, $\chi_{111}(47,·)$, $\chi_{111}(49,·)$, $\chi_{111}(53,·)$, $\chi_{111}(58,·)$, $\chi_{111}(62,·)$, $\chi_{111}(64,·)$, $\chi_{111}(65,·)$, $\chi_{111}(67,·)$, $\chi_{111}(70,·)$, $\chi_{111}(71,·)$, $\chi_{111}(73,·)$, $\chi_{111}(77,·)$, $\chi_{111}(83,·)$, $\chi_{111}(85,·)$, $\chi_{111}(86,·)$, $\chi_{111}(95,·)$, $\chi_{111}(100,·)$, $\chi_{111}(101,·)$, $\chi_{111}(104,·)$, $\chi_{111}(107,·)$, $\chi_{111}(110,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $\frac{1}{73} a^{33} - \frac{6}{73} a^{32} - \frac{7}{73} a^{31} - \frac{23}{73} a^{30} + \frac{3}{73} a^{29} + \frac{1}{73} a^{28} - \frac{19}{73} a^{27} - \frac{12}{73} a^{26} - \frac{25}{73} a^{25} - \frac{15}{73} a^{24} - \frac{1}{73} a^{23} + \frac{25}{73} a^{22} - \frac{18}{73} a^{21} - \frac{15}{73} a^{20} + \frac{6}{73} a^{19} + \frac{28}{73} a^{17} + \frac{8}{73} a^{16} - \frac{31}{73} a^{15} - \frac{14}{73} a^{14} - \frac{30}{73} a^{13} + \frac{32}{73} a^{12} + \frac{22}{73} a^{11} - \frac{27}{73} a^{10} + \frac{27}{73} a^{9} + \frac{23}{73} a^{8} - \frac{11}{73} a^{7} + \frac{33}{73} a^{6} + \frac{17}{73} a^{5} - \frac{34}{73} a^{4} + \frac{23}{73} a^{3} + \frac{8}{73} a^{2} - \frac{10}{73} a - \frac{9}{73}$, $\frac{1}{73} a^{34} + \frac{30}{73} a^{32} + \frac{8}{73} a^{31} + \frac{11}{73} a^{30} + \frac{19}{73} a^{29} - \frac{13}{73} a^{28} + \frac{20}{73} a^{27} - \frac{24}{73} a^{26} - \frac{19}{73} a^{25} - \frac{18}{73} a^{24} + \frac{19}{73} a^{23} - \frac{14}{73} a^{22} + \frac{23}{73} a^{21} - \frac{11}{73} a^{20} + \frac{36}{73} a^{19} + \frac{28}{73} a^{18} + \frac{30}{73} a^{17} + \frac{17}{73} a^{16} + \frac{19}{73} a^{15} + \frac{32}{73} a^{14} - \frac{2}{73} a^{13} - \frac{5}{73} a^{12} + \frac{32}{73} a^{11} + \frac{11}{73} a^{10} - \frac{34}{73} a^{9} - \frac{19}{73} a^{8} - \frac{33}{73} a^{7} - \frac{4}{73} a^{6} - \frac{5}{73} a^{5} - \frac{35}{73} a^{4} - \frac{35}{73} a^{2} + \frac{4}{73} a + \frac{19}{73}$, $\frac{1}{365727950135022534390908589813592896926517587901066835721264058193} a^{35} + \frac{1950516105845598691982369338104695891133902050074740674662109205}{365727950135022534390908589813592896926517587901066835721264058193} a^{34} + \frac{253581610741919985230813716809373485462908442829787779860168936}{365727950135022534390908589813592896926517587901066835721264058193} a^{33} - \frac{64829502577752596333899968231393035469031506954221300144246189544}{365727950135022534390908589813592896926517587901066835721264058193} a^{32} - \frac{171426671930428359662171926960367245031760919856537319692678265813}{365727950135022534390908589813592896926517587901066835721264058193} a^{31} + \frac{167259138011320175210398583166312336497107077372367930476994643193}{365727950135022534390908589813592896926517587901066835721264058193} a^{30} - \frac{125930194659218157536168437367198991365660747305603345211056167281}{365727950135022534390908589813592896926517587901066835721264058193} a^{29} + \frac{159648004432607467770462332776310761408142595578047781320532346123}{365727950135022534390908589813592896926517587901066835721264058193} a^{28} - \frac{45901791025683591345493937166712956812180620755409277034890139991}{365727950135022534390908589813592896926517587901066835721264058193} a^{27} + \frac{76587425406251914295978433060341707671296399192275963108746180435}{365727950135022534390908589813592896926517587901066835721264058193} a^{26} - \frac{60868644311315486407762965704995128761089545621461198353276435441}{365727950135022534390908589813592896926517587901066835721264058193} a^{25} - \frac{11311474690528038469653724942476985522239834185643115200943373733}{365727950135022534390908589813592896926517587901066835721264058193} a^{24} - \frac{155287263259564423639849315663016422982780181290304081681914942654}{365727950135022534390908589813592896926517587901066835721264058193} a^{23} + \frac{71420828342690238556594425765290849081259924609286594882171392991}{365727950135022534390908589813592896926517587901066835721264058193} a^{22} + \frac{126795280253375455903532827045566037192486930791567620869715314366}{365727950135022534390908589813592896926517587901066835721264058193} a^{21} - \frac{170263197343136887072257872347830332967784980065685434714163068916}{365727950135022534390908589813592896926517587901066835721264058193} a^{20} + \frac{38750430200732286887134608451486558950070427648346568473412092256}{365727950135022534390908589813592896926517587901066835721264058193} a^{19} + \frac{27434364450839131400884822942040960719188780831672475612790472340}{365727950135022534390908589813592896926517587901066835721264058193} a^{18} - \frac{115538956163578731820495750034415692015138637068201828193844902309}{365727950135022534390908589813592896926517587901066835721264058193} a^{17} + \frac{21772243557807424717202136862906079521230864492390634622966285446}{365727950135022534390908589813592896926517587901066835721264058193} a^{16} + \frac{128043828562029553068061055765444902564633588700766076742065158817}{365727950135022534390908589813592896926517587901066835721264058193} a^{15} + \frac{105452076280122806475167967986561496805477714342914344768731747704}{365727950135022534390908589813592896926517587901066835721264058193} a^{14} - \frac{127978273150494699885419828016130698374737616292520359879491593949}{365727950135022534390908589813592896926517587901066835721264058193} a^{13} + \frac{56368882361189773381703948375084124089397300872671347794455582784}{365727950135022534390908589813592896926517587901066835721264058193} a^{12} - \frac{142981749077426597632427662054800806145864324679766787518031917577}{365727950135022534390908589813592896926517587901066835721264058193} a^{11} - \frac{132073894054437580159302600730369241114260831797267873532847936570}{365727950135022534390908589813592896926517587901066835721264058193} a^{10} - \frac{31866929027198246826228983572688307698094353817658484334382381888}{365727950135022534390908589813592896926517587901066835721264058193} a^{9} + \frac{108461861466797502270050134013768132372002883477314458664407962837}{365727950135022534390908589813592896926517587901066835721264058193} a^{8} - \frac{7660053924441216511529945047414771725863643283466958195510097507}{365727950135022534390908589813592896926517587901066835721264058193} a^{7} + \frac{88291840788151329482617327533939042407199044501605834678007913153}{365727950135022534390908589813592896926517587901066835721264058193} a^{6} - \frac{163909424897598882429955677180278357648572526362635398335670180543}{365727950135022534390908589813592896926517587901066835721264058193} a^{5} - \frac{141058274403677446485745764155509429880853755749095887524255606441}{365727950135022534390908589813592896926517587901066835721264058193} a^{4} + \frac{38448035992474492236835156598294347626911260334088540362079321077}{365727950135022534390908589813592896926517587901066835721264058193} a^{3} - \frac{172688077016890610843428113561917382504165886437569587029636200349}{365727950135022534390908589813592896926517587901066835721264058193} a^{2} - \frac{148052034755178136356607951409769550931675265852953978830629741537}{365727950135022534390908589813592896926517587901066835721264058193} a + \frac{141728930178830187211731044814389788867332397448176597678434429495}{365727950135022534390908589813592896926517587901066835721264058193}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{19}\times C_{684}$, which has order $12996$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{34122480476536495885823411117725648848297922887380250870498727234}{365727950135022534390908589813592896926517587901066835721264058193} a^{35} + \frac{35920099990306144158226830773237501966815584652708354942618883933}{365727950135022534390908589813592896926517587901066835721264058193} a^{34} - \frac{615083437181100973102290398099363536394447387659071528670198770753}{365727950135022534390908589813592896926517587901066835721264058193} a^{33} + \frac{543294620918538617109207244987576078895238727979936775551656239507}{365727950135022534390908589813592896926517587901066835721264058193} a^{32} - \frac{6323219576533506173543594384637229613051597192385634606383939877972}{365727950135022534390908589813592896926517587901066835721264058193} a^{31} + \frac{4994028550074475773614939668982845334911542526376809072066813446520}{365727950135022534390908589813592896926517587901066835721264058193} a^{30} - \frac{43789545700798284266678688992786530335633250234760390102543103751356}{365727950135022534390908589813592896926517587901066835721264058193} a^{29} + \frac{30538101137546885171065725683196131944400618465349807317471070295845}{365727950135022534390908589813592896926517587901066835721264058193} a^{28} - \frac{226094852310675109725082640471747046842141478058709699943311770029233}{365727950135022534390908589813592896926517587901066835721264058193} a^{27} + \frac{140802803241538726678484986478660388481558873898343767651597561524073}{365727950135022534390908589813592896926517587901066835721264058193} a^{26} - \frac{899662743420468921090965311067708352400951449363031696002455350422472}{365727950135022534390908589813592896926517587901066835721264058193} a^{25} + \frac{494370034684118631348844025413733664758589959107270464644516063424382}{365727950135022534390908589813592896926517587901066835721264058193} a^{24} - \frac{2832702632307964074097956305645971571255004367493074655008528218257566}{365727950135022534390908589813592896926517587901066835721264058193} a^{23} + \frac{1375361385329746730339724095795553192320654228521346424514192109698348}{365727950135022534390908589813592896926517587901066835721264058193} a^{22} - \frac{7099305470203584634525615669076328860278060023228367082535085912640170}{365727950135022534390908589813592896926517587901066835721264058193} a^{21} + \frac{2996903950309203456086012668935968640961389811412156144802040975546348}{365727950135022534390908589813592896926517587901066835721264058193} a^{20} - \frac{14226830177776055252324451680478952567919670003585093236728241215416985}{365727950135022534390908589813592896926517587901066835721264058193} a^{19} + \frac{5210809126661414118826730544576553890988514785410355002755432457682249}{365727950135022534390908589813592896926517587901066835721264058193} a^{18} - \frac{22605602178149331114252766356866281505343532953417190044279124244844161}{365727950135022534390908589813592896926517587901066835721264058193} a^{17} + \frac{7007791415035400592789121544589243795962853911924902271068832990226289}{365727950135022534390908589813592896926517587901066835721264058193} a^{16} - \frac{28230029416107238778025746906923996814056773011687080990664209928227583}{365727950135022534390908589813592896926517587901066835721264058193} a^{15} + \frac{7416059244792492650399321473801859407320669821663505240054337179613445}{365727950135022534390908589813592896926517587901066835721264058193} a^{14} - \frac{27065934546758807409030469320616305346669578910218733914306996055971366}{365727950135022534390908589813592896926517587901066835721264058193} a^{13} + \frac{5753779239451731686726543155643944040830672515091752316957551478826250}{365727950135022534390908589813592896926517587901066835721264058193} a^{12} - \frac{19456343624872687763264086627413575996271004192247238151574420547824420}{365727950135022534390908589813592896926517587901066835721264058193} a^{11} + \frac{3462966144439364019763530187242271972835021163410861262040525403851913}{365727950135022534390908589813592896926517587901066835721264058193} a^{10} - \frac{9980823467549781215685173095720091111087833315498145689198934890360111}{365727950135022534390908589813592896926517587901066835721264058193} a^{9} + \frac{1307617305524707519457541155870299299414462296446468970040965316641557}{365727950135022534390908589813592896926517587901066835721264058193} a^{8} - \frac{3475551741590602543175147416232313481626086833511671804190450452709766}{365727950135022534390908589813592896926517587901066835721264058193} a^{7} + \frac{431341116566667804301373140731883003832073698261304135400115610321480}{365727950135022534390908589813592896926517587901066835721264058193} a^{6} - \frac{731868384586680047520962298759092079999212586283239884341466674884120}{365727950135022534390908589813592896926517587901066835721264058193} a^{5} + \frac{43979378537352129542691076866218379786253337005261913936392627312728}{365727950135022534390908589813592896926517587901066835721264058193} a^{4} - \frac{80982907038501973778097211728899009297524862646644087808361795677936}{365727950135022534390908589813592896926517587901066835721264058193} a^{3} + \frac{12761208633604858136842663688957528159502826724118708182623353365328}{365727950135022534390908589813592896926517587901066835721264058193} a^{2} - \frac{3288990076144576669983553907357450657151358179358877400431188778463}{365727950135022534390908589813592896926517587901066835721264058193} a + \frac{138091802744566568529774057644096308278359388757109784234311498641}{365727950135022534390908589813592896926517587901066835721264058193} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3171872728760.222 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{-111}) \), 3.3.1369.1, \(\Q(\sqrt{-3}, \sqrt{37})\), 6.0.50602347.1, 6.6.69343957.1, 6.0.1872286839.1, 9.9.3512479453921.1, 12.0.3505458007492611921.1, 18.0.242839247007536485508643885603.1, \(\Q(\zeta_{37})^+\), 18.0.8985052139278849963819823767311.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18^{2}$ R $18^{2}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{18}$ R $18^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{18}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
37Data not computed