Normalized defining polynomial
\( x^{36} + 19 x^{34} + 209 x^{32} + 1558 x^{30} + 8740 x^{28} + 38095 x^{26} + 132810 x^{24} + 372723 x^{22} + 848787 x^{20} + 1558038 x^{18} + 2298126 x^{16} + 2670317 x^{14} + 2415451 x^{12} + 1629193 x^{10} + 806113 x^{8} + 262086 x^{6} + 57399 x^{4} + 5415 x^{2} + 361 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18}$, $\frac{1}{19} a^{19}$, $\frac{1}{19} a^{20}$, $\frac{1}{19} a^{21}$, $\frac{1}{19} a^{22}$, $\frac{1}{19} a^{23}$, $\frac{1}{19} a^{24}$, $\frac{1}{19} a^{25}$, $\frac{1}{703} a^{26} + \frac{3}{703} a^{24} + \frac{12}{703} a^{22} - \frac{1}{703} a^{18} - \frac{6}{37} a^{16} - \frac{7}{37} a^{14} - \frac{2}{37} a^{12} + \frac{10}{37} a^{10} - \frac{1}{37} a^{8} - \frac{10}{37} a^{6} + \frac{4}{37} a^{4} - \frac{3}{37} a^{2} + \frac{3}{37}$, $\frac{1}{703} a^{27} + \frac{3}{703} a^{25} + \frac{12}{703} a^{23} - \frac{1}{703} a^{19} - \frac{6}{37} a^{17} - \frac{7}{37} a^{15} - \frac{2}{37} a^{13} + \frac{10}{37} a^{11} - \frac{1}{37} a^{9} - \frac{10}{37} a^{7} + \frac{4}{37} a^{5} - \frac{3}{37} a^{3} + \frac{3}{37} a$, $\frac{1}{703} a^{28} + \frac{3}{703} a^{24} + \frac{1}{703} a^{22} - \frac{1}{703} a^{20} + \frac{11}{37} a^{16} - \frac{18}{37} a^{14} + \frac{16}{37} a^{12} + \frac{6}{37} a^{10} - \frac{7}{37} a^{8} - \frac{3}{37} a^{6} - \frac{15}{37} a^{4} + \frac{12}{37} a^{2} - \frac{9}{37}$, $\frac{1}{703} a^{29} + \frac{3}{703} a^{25} + \frac{1}{703} a^{23} - \frac{1}{703} a^{21} + \frac{11}{37} a^{17} - \frac{18}{37} a^{15} + \frac{16}{37} a^{13} + \frac{6}{37} a^{11} - \frac{7}{37} a^{9} - \frac{3}{37} a^{7} - \frac{15}{37} a^{5} + \frac{12}{37} a^{3} - \frac{9}{37} a$, $\frac{1}{703} a^{30} - \frac{8}{703} a^{24} - \frac{10}{703} a^{18} + \frac{12}{37} a^{12} + \frac{15}{37} a^{6} - \frac{9}{37}$, $\frac{1}{703} a^{31} - \frac{8}{703} a^{25} - \frac{10}{703} a^{19} + \frac{12}{37} a^{13} + \frac{15}{37} a^{7} - \frac{9}{37} a$, $\frac{1}{703} a^{32} - \frac{13}{703} a^{24} - \frac{15}{703} a^{22} - \frac{10}{703} a^{20} - \frac{8}{703} a^{18} - \frac{11}{37} a^{16} - \frac{7}{37} a^{14} - \frac{16}{37} a^{12} + \frac{6}{37} a^{10} + \frac{7}{37} a^{8} - \frac{6}{37} a^{6} - \frac{5}{37} a^{4} + \frac{4}{37} a^{2} - \frac{13}{37}$, $\frac{1}{703} a^{33} - \frac{13}{703} a^{25} - \frac{15}{703} a^{23} - \frac{10}{703} a^{21} - \frac{8}{703} a^{19} - \frac{11}{37} a^{17} - \frac{7}{37} a^{15} - \frac{16}{37} a^{13} + \frac{6}{37} a^{11} + \frac{7}{37} a^{9} - \frac{6}{37} a^{7} - \frac{5}{37} a^{5} + \frac{4}{37} a^{3} - \frac{13}{37} a$, $\frac{1}{66495926797178861491219} a^{34} + \frac{95473288288552618}{184199243205481610779} a^{32} + \frac{1807951731514635866}{3499785620904150604801} a^{30} + \frac{171309968879160652}{3499785620904150604801} a^{28} + \frac{440090776031058913}{3499785620904150604801} a^{26} - \frac{53585764503177685364}{3499785620904150604801} a^{24} + \frac{26683600630186601723}{3499785620904150604801} a^{22} + \frac{32781662307927217072}{3499785620904150604801} a^{20} + \frac{91988776569193916607}{3499785620904150604801} a^{18} - \frac{1307974449556231788942}{3499785620904150604801} a^{16} - \frac{30943815699806536848}{184199243205481610779} a^{14} - \frac{43424296143470230158}{184199243205481610779} a^{12} - \frac{71260072058689014988}{184199243205481610779} a^{10} - \frac{55846283841363957147}{184199243205481610779} a^{8} + \frac{26505569839203403346}{184199243205481610779} a^{6} - \frac{34104452947850036366}{184199243205481610779} a^{4} - \frac{38520759123752461115}{184199243205481610779} a^{2} + \frac{65912108193554012131}{184199243205481610779}$, $\frac{1}{66495926797178861491219} a^{35} + \frac{95473288288552618}{184199243205481610779} a^{33} + \frac{1807951731514635866}{3499785620904150604801} a^{31} + \frac{171309968879160652}{3499785620904150604801} a^{29} + \frac{440090776031058913}{3499785620904150604801} a^{27} - \frac{53585764503177685364}{3499785620904150604801} a^{25} + \frac{26683600630186601723}{3499785620904150604801} a^{23} + \frac{32781662307927217072}{3499785620904150604801} a^{21} + \frac{91988776569193916607}{3499785620904150604801} a^{19} - \frac{1307974449556231788942}{3499785620904150604801} a^{17} - \frac{30943815699806536848}{184199243205481610779} a^{15} - \frac{43424296143470230158}{184199243205481610779} a^{13} - \frac{71260072058689014988}{184199243205481610779} a^{11} - \frac{55846283841363957147}{184199243205481610779} a^{9} + \frac{26505569839203403346}{184199243205481610779} a^{7} - \frac{34104452947850036366}{184199243205481610779} a^{5} - \frac{38520759123752461115}{184199243205481610779} a^{3} + \frac{65912108193554012131}{184199243205481610779} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{26829997518280183021}{66495926797178861491219} a^{34} + \frac{26598244133079038772}{3499785620904150604801} a^{32} + \frac{290816878133015963118}{3499785620904150604801} a^{30} + \frac{2153288311705603483287}{3499785620904150604801} a^{28} + \frac{11998687105984961447667}{3499785620904150604801} a^{26} + \frac{51899600479398829656543}{3499785620904150604801} a^{24} + \frac{4849522942561243997067}{94588800564977043373} a^{22} + \frac{498605177959280803164861}{3499785620904150604801} a^{20} + \frac{1122593033140817945162022}{3499785620904150604801} a^{18} + \frac{2031702862437939905122865}{3499785620904150604801} a^{16} + \frac{155072516601073134700314}{184199243205481610779} a^{14} + \frac{176194500030210489789879}{184199243205481610779} a^{12} + \frac{155039966107495776853800}{184199243205481610779} a^{10} + \frac{100425776080331302112142}{184199243205481610779} a^{8} + \frac{47425533042550358380716}{184199243205481610779} a^{6} + \frac{14082041180781203080581}{184199243205481610779} a^{4} + \frac{3119154647880984572367}{184199243205481610779} a^{2} + \frac{291248148377115816489}{184199243205481610779} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||