Properties

Label 36.0.79962223364...8784.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{36}\cdot 3^{18}\cdot 19^{34}$
Root discriminant $55.89$
Ramified primes $2, 3, 19$
Class number $52934$ (GRH)
Class group $[52934]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 360, 0, 10470, 0, 118407, 0, 691677, 0, 2413645, 0, 5490811, 0, 8624289, 0, 9725341, 0, 8084594, 0, 5038516, 0, 2375189, 0, 848161, 0, 227942, 0, 45354, 0, 6478, 0, 628, 0, 37, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 37*x^34 + 628*x^32 + 6478*x^30 + 45354*x^28 + 227942*x^26 + 848161*x^24 + 2375189*x^22 + 5038516*x^20 + 8084594*x^18 + 9725341*x^16 + 8624289*x^14 + 5490811*x^12 + 2413645*x^10 + 691677*x^8 + 118407*x^6 + 10470*x^4 + 360*x^2 + 1)
 
gp: K = bnfinit(x^36 + 37*x^34 + 628*x^32 + 6478*x^30 + 45354*x^28 + 227942*x^26 + 848161*x^24 + 2375189*x^22 + 5038516*x^20 + 8084594*x^18 + 9725341*x^16 + 8624289*x^14 + 5490811*x^12 + 2413645*x^10 + 691677*x^8 + 118407*x^6 + 10470*x^4 + 360*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} + 37 x^{34} + 628 x^{32} + 6478 x^{30} + 45354 x^{28} + 227942 x^{26} + 848161 x^{24} + 2375189 x^{22} + 5038516 x^{20} + 8084594 x^{18} + 9725341 x^{16} + 8624289 x^{14} + 5490811 x^{12} + 2413645 x^{10} + 691677 x^{8} + 118407 x^{6} + 10470 x^{4} + 360 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(799622233646074762983150698451178476894456963777140963130998784=2^{36}\cdot 3^{18}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(228=2^{2}\cdot 3\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{228}(1,·)$, $\chi_{228}(7,·)$, $\chi_{228}(139,·)$, $\chi_{228}(143,·)$, $\chi_{228}(25,·)$, $\chi_{228}(155,·)$, $\chi_{228}(29,·)$, $\chi_{228}(163,·)$, $\chi_{228}(167,·)$, $\chi_{228}(41,·)$, $\chi_{228}(43,·)$, $\chi_{228}(173,·)$, $\chi_{228}(175,·)$, $\chi_{228}(49,·)$, $\chi_{228}(179,·)$, $\chi_{228}(53,·)$, $\chi_{228}(55,·)$, $\chi_{228}(185,·)$, $\chi_{228}(59,·)$, $\chi_{228}(61,·)$, $\chi_{228}(65,·)$, $\chi_{228}(71,·)$, $\chi_{228}(73,·)$, $\chi_{228}(203,·)$, $\chi_{228}(85,·)$, $\chi_{228}(89,·)$, $\chi_{228}(221,·)$, $\chi_{228}(199,·)$, $\chi_{228}(227,·)$, $\chi_{228}(107,·)$, $\chi_{228}(157,·)$, $\chi_{228}(113,·)$, $\chi_{228}(115,·)$, $\chi_{228}(187,·)$, $\chi_{228}(169,·)$, $\chi_{228}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{52934}$, which has order $52934$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -a^{19} - 19 a^{17} - 152 a^{15} - 665 a^{13} - 1729 a^{11} - 2717 a^{9} - 2508 a^{7} - 1254 a^{5} - 285 a^{3} - 19 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1438232971979.9597 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{57}) \), 3.3.361.1, \(\Q(i, \sqrt{57})\), 6.0.8340544.1, 6.0.4278699072.1, 6.6.66854673.1, \(\Q(\zeta_{19})^+\), 12.0.18307265748733661184.1, 18.0.75613185918270483380568064.1, 18.0.28277592430157040563214702870528.1, \(\Q(\zeta_{57})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $18^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ R $18^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
19Data not computed