magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 360, 0, 10470, 0, 118407, 0, 691677, 0, 2413645, 0, 5490811, 0, 8624289, 0, 9725341, 0, 8084594, 0, 5038516, 0, 2375189, 0, 848161, 0, 227942, 0, 45354, 0, 6478, 0, 628, 0, 37, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 37*x^34 + 628*x^32 + 6478*x^30 + 45354*x^28 + 227942*x^26 + 848161*x^24 + 2375189*x^22 + 5038516*x^20 + 8084594*x^18 + 9725341*x^16 + 8624289*x^14 + 5490811*x^12 + 2413645*x^10 + 691677*x^8 + 118407*x^6 + 10470*x^4 + 360*x^2 + 1)
gp: K = bnfinit(x^36 + 37*x^34 + 628*x^32 + 6478*x^30 + 45354*x^28 + 227942*x^26 + 848161*x^24 + 2375189*x^22 + 5038516*x^20 + 8084594*x^18 + 9725341*x^16 + 8624289*x^14 + 5490811*x^12 + 2413645*x^10 + 691677*x^8 + 118407*x^6 + 10470*x^4 + 360*x^2 + 1, 1)
\( x^{36} + 37 x^{34} + 628 x^{32} + 6478 x^{30} + 45354 x^{28} + 227942 x^{26} + 848161 x^{24} + 2375189 x^{22} + 5038516 x^{20} + 8084594 x^{18} + 9725341 x^{16} + 8624289 x^{14} + 5490811 x^{12} + 2413645 x^{10} + 691677 x^{8} + 118407 x^{6} + 10470 x^{4} + 360 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $36$ |
|
| Signature: | | $[0, 18]$ |
|
| Discriminant: | | \(799622233646074762983150698451178476894456963777140963130998784=2^{36}\cdot 3^{18}\cdot 19^{34}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $55.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(228=2^{2}\cdot 3\cdot 19\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{228}(1,·)$, $\chi_{228}(7,·)$, $\chi_{228}(139,·)$, $\chi_{228}(143,·)$, $\chi_{228}(25,·)$, $\chi_{228}(155,·)$, $\chi_{228}(29,·)$, $\chi_{228}(163,·)$, $\chi_{228}(167,·)$, $\chi_{228}(41,·)$, $\chi_{228}(43,·)$, $\chi_{228}(173,·)$, $\chi_{228}(175,·)$, $\chi_{228}(49,·)$, $\chi_{228}(179,·)$, $\chi_{228}(53,·)$, $\chi_{228}(55,·)$, $\chi_{228}(185,·)$, $\chi_{228}(59,·)$, $\chi_{228}(61,·)$, $\chi_{228}(65,·)$, $\chi_{228}(71,·)$, $\chi_{228}(73,·)$, $\chi_{228}(203,·)$, $\chi_{228}(85,·)$, $\chi_{228}(89,·)$, $\chi_{228}(221,·)$, $\chi_{228}(199,·)$, $\chi_{228}(227,·)$, $\chi_{228}(107,·)$, $\chi_{228}(157,·)$, $\chi_{228}(113,·)$, $\chi_{228}(115,·)$, $\chi_{228}(187,·)$, $\chi_{228}(169,·)$, $\chi_{228}(121,·)$$\rbrace$
|
| This is a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
$C_{52934}$, which has order $52934$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $17$
|
|
| Torsion generator: | | \( -a^{19} - 19 a^{17} - 152 a^{15} - 665 a^{13} - 1729 a^{11} - 2717 a^{9} - 2508 a^{7} - 1254 a^{5} - 285 a^{3} - 19 a \) (order $4$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 1438232971979.9597 \)
(assuming GRH)
|
|
$C_2\times C_{18}$ (as 36T2):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{57}) \), 3.3.361.1, \(\Q(i, \sqrt{57})\), 6.0.8340544.1, 6.0.4278699072.1, 6.6.66854673.1, \(\Q(\zeta_{19})^+\), 12.0.18307265748733661184.1, 18.0.75613185918270483380568064.1, 18.0.28277592430157040563214702870528.1, \(\Q(\zeta_{57})^+\)
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
R |
$18^{2}$ |
${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ |
${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ |
$18^{2}$ |
$18^{2}$ |
R |
$18^{2}$ |
${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ |
${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ |
${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ |
${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ |
$18^{2}$ |
$18^{2}$ |
${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ |
$18^{2}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])