Normalized defining polynomial
\( x^{36} + 3 \)
Invariants
| Degree: | $36$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 18]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77455827645541172243429237514462094454119707909588182611525632=2^{36}\cdot 3^{107}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{33} - \frac{1}{2} a^{15}$, $\frac{1}{2} a^{34} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{35} - \frac{1}{2} a^{17}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{2} a^{18} + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 146190247413682400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_{18}):C_6$ (as 36T185):
| A solvable group of order 216 |
| The 31 conjugacy class representatives for $(C_2\times C_{18}):C_6$ |
| Character table for $(C_2\times C_{18}):C_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 4.0.432.1, 6.0.177147.2, 9.1.2541865828329.2 x3, 12.0.385610460475392.3, 18.0.19383245667680019896796723.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | $18{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{9}$ | $18{,}\,{\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | $18{,}\,{\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | $18{,}\,{\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.12.12.18 | $x^{12} + 80 x^{10} + 81 x^{8} - 160 x^{6} - 117 x^{4} + 80 x^{2} + 227$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 2.12.12.18 | $x^{12} + 80 x^{10} + 81 x^{8} - 160 x^{6} - 117 x^{4} + 80 x^{2} + 227$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| 3 | Data not computed | ||||||