Normalized defining polynomial
\( x^{36} - 13 x^{34} + 119 x^{32} - 946 x^{30} + 6985 x^{28} - 49336 x^{26} + 338472 x^{24} - 1782270 x^{22} + 8663374 x^{20} - 40095490 x^{18} + 175403900 x^{16} - 699981526 x^{14} + 2294243848 x^{12} - 3420884824 x^{10} + 5086203969 x^{8} - 7494358949 x^{6} + 10739824263 x^{4} - 14123762450 x^{2} + 13841287201 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{8} a^{14} + \frac{1}{8}$, $\frac{1}{8} a^{15} + \frac{1}{8} a$, $\frac{1}{8} a^{16} + \frac{1}{8} a^{2}$, $\frac{1}{8} a^{17} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{18} + \frac{1}{8} a^{4}$, $\frac{1}{8} a^{19} + \frac{1}{8} a^{5}$, $\frac{1}{8} a^{20} + \frac{1}{8} a^{6}$, $\frac{1}{8} a^{21} + \frac{1}{8} a^{7}$, $\frac{1}{8} a^{22} + \frac{1}{8} a^{8}$, $\frac{1}{8} a^{23} + \frac{1}{8} a^{9}$, $\frac{1}{8} a^{24} + \frac{1}{8} a^{10}$, $\frac{1}{56} a^{25} + \frac{1}{56} a^{23} - \frac{1}{56} a^{19} - \frac{1}{56} a^{17} + \frac{1}{7} a^{13} - \frac{1}{8} a^{11} - \frac{15}{56} a^{9} - \frac{1}{7} a^{7} + \frac{1}{8} a^{5} + \frac{15}{56} a^{3} + \frac{1}{7} a$, $\frac{1}{465319718314472} a^{26} - \frac{3243115003540}{58164964789309} a^{24} - \frac{2505762039743}{66474245473496} a^{22} + \frac{6490631255265}{232659859157236} a^{20} + \frac{976289912167}{232659859157236} a^{18} + \frac{188121821805}{8309280684187} a^{16} + \frac{1810931332925}{465319718314472} a^{14} - \frac{16463970362265}{66474245473496} a^{12} + \frac{5935032075111}{58164964789309} a^{10} + \frac{102997627485423}{465319718314472} a^{8} - \frac{3103496852465}{33237122736748} a^{6} - \frac{24055837713785}{232659859157236} a^{4} - \frac{12110059037173}{58164964789309} a^{2} + \frac{3102595254541}{9496320781928}$, $\frac{1}{3257238028201304} a^{27} - \frac{3243115003540}{407154753525163} a^{25} + \frac{1450879661111}{116329929578618} a^{23} - \frac{45183702278779}{3257238028201304} a^{21} - \frac{172542314543593}{3257238028201304} a^{19} + \frac{9814255258627}{465319718314472} a^{17} + \frac{44076456425213}{814309507050326} a^{15} - \frac{82938215835761}{465319718314472} a^{13} + \frac{180429926443038}{407154753525163} a^{11} + \frac{272950507225919}{814309507050326} a^{9} - \frac{14516274389117}{465319718314472} a^{7} - \frac{222606569795497}{3257238028201304} a^{5} + \frac{891923929120869}{3257238028201304} a^{3} + \frac{6414089277905}{16618561368374} a$, $\frac{1}{182405329579273024} a^{28} - \frac{5}{5700166549352282} a^{26} + \frac{50243014059881}{814309507050326} a^{24} - \frac{198792879690063}{22800666197409128} a^{22} + \frac{646086344365783}{22800666197409128} a^{20} + \frac{144157829974089}{3257238028201304} a^{18} + \frac{1369253929671671}{22800666197409128} a^{16} - \frac{211887109294689}{13028952112805216} a^{14} - \frac{606052974670761}{5700166549352282} a^{12} + \frac{1665423993674383}{5700166549352282} a^{10} - \frac{18716055839905}{3257238028201304} a^{8} - \frac{7389258841293937}{22800666197409128} a^{6} + \frac{4194543694700143}{22800666197409128} a^{4} - \frac{130736640838241}{465319718314472} a^{2} + \frac{27909818601233}{75970566255424}$, $\frac{1}{1276837307054911168} a^{29} - \frac{5}{39901165845465974} a^{27} + \frac{50243014059881}{5700166549352282} a^{25} + \frac{1043932118042295}{19950582922732987} a^{23} + \frac{646086344365783}{159604663381863896} a^{21} + \frac{137828145874813}{5700166549352282} a^{19} + \frac{7069420479023953}{159604663381863896} a^{17} - \frac{3469125137495993}{91202664789636512} a^{15} + \frac{16494446673386085}{39901165845465974} a^{13} + \frac{13065757092378947}{39901165845465974} a^{11} + \frac{150343525591948}{2850083274676141} a^{9} - \frac{30189925038703065}{159604663381863896} a^{7} - \frac{3939009807008211}{39901165845465974} a^{5} + \frac{916232725369321}{3257238028201304} a^{3} + \frac{84887743292801}{531793963787968} a$, $\frac{1}{8937861149384378176} a^{30} - \frac{13}{8937861149384378176} a^{28} + \frac{45}{159604663381863896} a^{26} + \frac{57469480556058759}{1117232643673047272} a^{24} + \frac{47395416339855947}{1117232643673047272} a^{22} + \frac{248224465313147}{159604663381863896} a^{20} - \frac{41162813595329285}{1117232643673047272} a^{18} + \frac{7090169404570739}{638418653527455584} a^{16} - \frac{15218847034525201}{4468930574692189088} a^{14} - \frac{454568503488813085}{1117232643673047272} a^{12} - \frac{53553374638479055}{159604663381863896} a^{10} - \frac{238146285782543669}{1117232643673047272} a^{8} - \frac{436212156870181859}{1117232643673047272} a^{6} - \frac{4561775703613101}{22800666197409128} a^{4} - \frac{818778848072407}{3722557746515776} a^{2} + \frac{28072101076347}{75970566255424}$, $\frac{1}{62565028045690647232} a^{31} - \frac{13}{62565028045690647232} a^{29} + \frac{45}{1117232643673047272} a^{27} + \frac{57469480556058759}{7820628505711330904} a^{25} - \frac{231912744578405871}{7820628505711330904} a^{23} + \frac{10099403694023067}{558616321836523636} a^{21} + \frac{12311408357975203}{977578563213916363} a^{19} - \frac{232316825668225105}{4468930574692189088} a^{17} + \frac{1102013796638522071}{31282514022845323616} a^{15} + \frac{662664140184234187}{7820628505711330904} a^{13} + \frac{265655952125248737}{1117232643673047272} a^{11} + \frac{1717010840645289057}{7820628505711330904} a^{9} + \frac{410337283630998161}{3910314252855665452} a^{7} + \frac{2636121721059021}{19950582922732987} a^{5} - \frac{5937295749531599}{26057904225610432} a^{3} + \frac{47064742640203}{531793963787968} a$, $\frac{1}{437955196319834530624} a^{32} - \frac{13}{437955196319834530624} a^{30} + \frac{17}{62565028045690647232} a^{28} + \frac{14647}{27372199769989658164} a^{26} + \frac{1921931111283379349}{54744399539979316328} a^{24} + \frac{23715329639203133}{977578563213916363} a^{22} + \frac{2970533480945763517}{54744399539979316328} a^{20} + \frac{970929795739154311}{31282514022845323616} a^{18} - \frac{12105973541660955933}{218977598159917265312} a^{16} + \frac{1749258827229197539}{218977598159917265312} a^{14} - \frac{1516603366277236099}{3910314252855665452} a^{12} + \frac{3045621720157464813}{54744399539979316328} a^{10} - \frac{3331378040955949627}{6843049942497414541} a^{8} - \frac{361346937944844419}{1117232643673047272} a^{6} - \frac{42766734044530495}{182405329579273024} a^{4} + \frac{1206087150896419}{3722557746515776} a^{2} - \frac{10699939378865}{75970566255424}$, $\frac{1}{3065686374238841714368} a^{33} - \frac{13}{3065686374238841714368} a^{31} + \frac{17}{437955196319834530624} a^{29} + \frac{14647}{191605398389927607148} a^{27} + \frac{1921931111283379349}{383210796779855214296} a^{25} + \frac{1072439881770728895}{27372199769989658164} a^{23} - \frac{484064557693956378}{47901349597481901787} a^{21} + \frac{12701872554306150667}{218977598159917265312} a^{19} - \frac{66850373081640272261}{1532843187119420857184} a^{17} + \frac{56493658367208513867}{1532843187119420857184} a^{15} + \frac{6304025139434094805}{27372199769989658164} a^{13} + \frac{167278820340095413797}{383210796779855214296} a^{11} + \frac{75634137088642590525}{191605398389927607148} a^{9} - \frac{481587368677889643}{977578563213916363} a^{7} - \frac{156770065031576135}{1276837307054911168} a^{5} + \frac{275447714267475}{26057904225610432} a^{3} + \frac{1184671740713}{75970566255424} a$, $\frac{1}{21459804619671892000576} a^{34} - \frac{13}{21459804619671892000576} a^{32} + \frac{17}{3065686374238841714368} a^{30} - \frac{473}{10729902309835946000288} a^{28} - \frac{719727}{2682475577458986500072} a^{26} + \frac{16124887576979796959}{383210796779855214296} a^{24} - \frac{116585102829424402067}{2682475577458986500072} a^{22} + \frac{23861863614638170223}{1532843187119420857184} a^{20} + \frac{363483010066018745395}{10729902309835946000288} a^{18} + \frac{385084237479126786695}{10729902309835946000288} a^{16} - \frac{36885404969438080889}{766421593559710428592} a^{14} - \frac{6765554154083058655}{2682475577458986500072} a^{12} + \frac{10916550041436124793}{2682475577458986500072} a^{10} + \frac{21660977151667525125}{54744399539979316328} a^{8} + \frac{3554350852308769073}{8937861149384378176} a^{6} - \frac{5089731938085117}{182405329579273024} a^{4} + \frac{16409972761735}{75970566255424} a^{2} - \frac{907430289301}{37985283127712}$, $\frac{1}{150218632337703244004032} a^{35} - \frac{13}{150218632337703244004032} a^{33} + \frac{17}{21459804619671892000576} a^{31} - \frac{473}{75109316168851622002016} a^{29} - \frac{719727}{18777329042212905500504} a^{27} + \frac{16124887576979796959}{2682475577458986500072} a^{25} - \frac{116585102829424402067}{18777329042212905500504} a^{23} - \frac{167743534775289436925}{10729902309835946000288} a^{21} - \frac{2318992567392967754677}{75109316168851622002016} a^{19} - \frac{956153551250366463341}{75109316168851622002016} a^{17} - \frac{132688104164401884463}{5364951154917973000144} a^{15} + \frac{5358185600763889941489}{18777329042212905500504} a^{13} - \frac{5354034604876536875351}{18777329042212905500504} a^{11} - \frac{87827821928291107531}{383210796779855214296} a^{9} + \frac{29250701656788856329}{62565028045690647232} a^{7} + \frac{131714265246369651}{1276837307054911168} a^{5} + \frac{6913651979807}{531793963787968} a^{3} + \frac{10044996510737}{37985283127712} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{10625579}{1276837307054911168} a^{33} - \frac{2680158372175}{638418653527455584} a^{19} - \frac{468901578337858483}{1276837307054911168} a^{5} \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 19 | Data not computed | ||||||