Normalized defining polynomial
\( x^{36} + 234 x^{32} + 16497 x^{28} + 423088 x^{24} + 3439800 x^{20} + 2847312 x^{16} + 761144 x^{12} + 73593 x^{8} + 1794 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{1537} a^{24} + \frac{139}{1537} a^{20} - \frac{33}{1537} a^{16} + \frac{340}{1537} a^{12} + \frac{723}{1537} a^{8} + \frac{150}{1537} a^{4} + \frac{49}{1537}$, $\frac{1}{1537} a^{25} + \frac{139}{1537} a^{21} - \frac{33}{1537} a^{17} + \frac{340}{1537} a^{13} + \frac{723}{1537} a^{9} + \frac{150}{1537} a^{5} + \frac{49}{1537} a$, $\frac{1}{1537} a^{26} + \frac{139}{1537} a^{22} - \frac{33}{1537} a^{18} + \frac{340}{1537} a^{14} + \frac{723}{1537} a^{10} + \frac{150}{1537} a^{6} + \frac{49}{1537} a^{2}$, $\frac{1}{1537} a^{27} + \frac{139}{1537} a^{23} - \frac{33}{1537} a^{19} + \frac{340}{1537} a^{15} + \frac{723}{1537} a^{11} + \frac{150}{1537} a^{7} + \frac{49}{1537} a^{3}$, $\frac{1}{12296} a^{28} - \frac{498}{1537} a^{20} - \frac{729}{1537} a^{16} + \frac{523}{1537} a^{12} + \frac{329}{1537} a^{8} + \frac{666}{1537} a^{4} - \frac{663}{12296}$, $\frac{1}{12296} a^{29} - \frac{498}{1537} a^{21} - \frac{729}{1537} a^{17} + \frac{523}{1537} a^{13} + \frac{329}{1537} a^{9} + \frac{666}{1537} a^{5} - \frac{663}{12296} a$, $\frac{1}{12296} a^{30} - \frac{498}{1537} a^{22} - \frac{729}{1537} a^{18} + \frac{523}{1537} a^{14} + \frac{329}{1537} a^{10} + \frac{666}{1537} a^{6} - \frac{663}{12296} a^{2}$, $\frac{1}{12296} a^{31} - \frac{498}{1537} a^{23} - \frac{729}{1537} a^{19} + \frac{523}{1537} a^{15} + \frac{329}{1537} a^{11} + \frac{666}{1537} a^{7} - \frac{663}{12296} a^{3}$, $\frac{1}{29602381262764908776384} a^{32} + \frac{704480871763353273}{29602381262764908776384} a^{28} + \frac{805965838864293305}{3700297657845613597048} a^{24} - \frac{222697941470102849347}{3700297657845613597048} a^{20} + \frac{830660127185587026241}{1850148828922806798524} a^{16} + \frac{53476474018532892665}{462537207230701699631} a^{12} + \frac{1707071167133203870047}{3700297657845613597048} a^{8} + \frac{5370287505039882213569}{29602381262764908776384} a^{4} + \frac{7335764073165972550353}{29602381262764908776384}$, $\frac{1}{29602381262764908776384} a^{33} + \frac{704480871763353273}{29602381262764908776384} a^{29} + \frac{805965838864293305}{3700297657845613597048} a^{25} - \frac{222697941470102849347}{3700297657845613597048} a^{21} + \frac{830660127185587026241}{1850148828922806798524} a^{17} + \frac{53476474018532892665}{462537207230701699631} a^{13} + \frac{1707071167133203870047}{3700297657845613597048} a^{9} + \frac{5370287505039882213569}{29602381262764908776384} a^{5} + \frac{7335764073165972550353}{29602381262764908776384} a$, $\frac{1}{29602381262764908776384} a^{34} + \frac{704480871763353273}{29602381262764908776384} a^{30} + \frac{805965838864293305}{3700297657845613597048} a^{26} - \frac{222697941470102849347}{3700297657845613597048} a^{22} + \frac{830660127185587026241}{1850148828922806798524} a^{18} + \frac{53476474018532892665}{462537207230701699631} a^{14} + \frac{1707071167133203870047}{3700297657845613597048} a^{10} + \frac{5370287505039882213569}{29602381262764908776384} a^{6} + \frac{7335764073165972550353}{29602381262764908776384} a^{2}$, $\frac{1}{29602381262764908776384} a^{35} + \frac{704480871763353273}{29602381262764908776384} a^{31} + \frac{805965838864293305}{3700297657845613597048} a^{27} - \frac{222697941470102849347}{3700297657845613597048} a^{23} + \frac{830660127185587026241}{1850148828922806798524} a^{19} + \frac{53476474018532892665}{462537207230701699631} a^{15} + \frac{1707071167133203870047}{3700297657845613597048} a^{11} + \frac{5370287505039882213569}{29602381262764908776384} a^{7} + \frac{7335764073165972550353}{29602381262764908776384} a^{3}$
Class group and class number
$C_{2}\times C_{2}\times C_{18}\times C_{126}$, which has order $9072$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{777169578454749605}{116544808121121688096} a^{33} - \frac{181842965177485526397}{116544808121121688096} a^{29} - \frac{1602190315831148653893}{14568101015140211012} a^{25} - \frac{41071031422755870665389}{14568101015140211012} a^{21} - \frac{166692176757014898869253}{7284050507570105506} a^{17} - \frac{67564173576078929817462}{3642025253785052753} a^{13} - \frac{68551006951128593547867}{14568101015140211012} a^{9} - \frac{46568446236894731217381}{116544808121121688096} a^{5} - \frac{780433761781366821813}{116544808121121688096} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160258501280890.78 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||