Normalized defining polynomial
\( x^{36} + 9 x^{34} - 4 x^{33} + 72 x^{32} - 69 x^{31} + 584 x^{30} + 981 x^{29} + 4881 x^{28} + 7326 x^{27} + 34614 x^{26} + 39264 x^{25} + 241820 x^{24} + 164610 x^{23} + 347325 x^{22} + 272002 x^{21} + 443511 x^{20} + 341952 x^{19} + 513316 x^{18} + 62091 x^{17} + 423768 x^{16} + 53105 x^{15} + 415071 x^{14} + 105954 x^{13} + 408896 x^{12} + 148752 x^{11} + 103692 x^{10} + 47916 x^{9} + 30861 x^{8} + 10350 x^{7} + 8009 x^{6} - 1710 x^{5} + 372 x^{4} - 77 x^{3} + 18 x^{2} - 3 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{26} a^{21} - \frac{3}{26} a^{14} + \frac{3}{26} a^{7} - \frac{4}{13}$, $\frac{1}{26} a^{22} - \frac{3}{26} a^{15} + \frac{3}{26} a^{8} - \frac{4}{13} a$, $\frac{1}{26} a^{23} - \frac{3}{26} a^{16} + \frac{3}{26} a^{9} - \frac{4}{13} a^{2}$, $\frac{1}{26} a^{24} - \frac{3}{26} a^{17} + \frac{3}{26} a^{10} - \frac{4}{13} a^{3}$, $\frac{1}{26} a^{25} - \frac{3}{26} a^{18} + \frac{3}{26} a^{11} - \frac{4}{13} a^{4}$, $\frac{1}{60814} a^{26} + \frac{775}{60814} a^{25} - \frac{498}{30407} a^{24} - \frac{45}{60814} a^{23} + \frac{175}{30407} a^{22} - \frac{527}{30407} a^{21} + \frac{225}{4678} a^{20} + \frac{4646}{30407} a^{19} - \frac{2273}{60814} a^{18} + \frac{5835}{60814} a^{17} - \frac{4320}{30407} a^{16} - \frac{9591}{60814} a^{15} + \frac{3955}{60814} a^{14} + \frac{1885}{4678} a^{13} - \frac{9300}{30407} a^{12} - \frac{12365}{60814} a^{11} - \frac{25361}{60814} a^{10} + \frac{5360}{30407} a^{9} - \frac{26679}{60814} a^{8} - \frac{19139}{60814} a^{7} + \frac{501}{4678} a^{6} + \frac{30399}{60814} a^{5} - \frac{13266}{30407} a^{4} - \frac{28913}{60814} a^{3} + \frac{30377}{60814} a^{2} + \frac{30337}{60814} a - \frac{22937}{60814}$, $\frac{1}{60814} a^{27} - \frac{249}{30407} a^{25} - \frac{15}{60814} a^{24} + \frac{70}{30407} a^{23} - \frac{490}{30407} a^{22} + \frac{1125}{60814} a^{21} - \frac{7465}{60814} a^{20} + \frac{111}{2339} a^{19} - \frac{2776}{30407} a^{18} + \frac{2278}{30407} a^{17} + \frac{10903}{60814} a^{16} - \frac{2859}{30407} a^{15} - \frac{6937}{60814} a^{14} + \frac{24807}{60814} a^{13} + \frac{774}{2339} a^{12} + \frac{9536}{30407} a^{11} - \frac{6256}{30407} a^{10} - \frac{17195}{60814} a^{9} + \frac{1858}{30407} a^{8} + \frac{7639}{60814} a^{7} + \frac{15193}{30407} a^{6} - \frac{782}{2339} a^{5} + \frac{1992}{30407} a^{4} - \frac{75}{60814} a^{3} + \frac{30197}{60814} a^{2} + \frac{9809}{30407} a + \frac{15091}{30407}$, $\frac{1}{121628} a^{28} - \frac{27}{2339} a^{21} + \frac{6247}{121628} a^{14} + \frac{14125}{60814} a^{7} - \frac{10645}{121628}$, $\frac{1}{121628} a^{29} - \frac{27}{2339} a^{22} + \frac{6247}{121628} a^{15} + \frac{14125}{60814} a^{8} - \frac{10645}{121628} a$, $\frac{1}{2310932} a^{30} - \frac{7}{2310932} a^{29} + \frac{9}{2310932} a^{28} - \frac{5}{1155466} a^{27} - \frac{7}{1155466} a^{26} - \frac{2637}{577733} a^{25} + \frac{15}{577733} a^{24} + \frac{12947}{1155466} a^{23} - \frac{3335}{577733} a^{22} - \frac{13921}{1155466} a^{21} - \frac{256813}{1155466} a^{20} - \frac{70144}{577733} a^{19} + \frac{25344}{577733} a^{18} + \frac{109461}{1155466} a^{17} + \frac{4277}{177764} a^{16} + \frac{110301}{2310932} a^{15} - \frac{420967}{2310932} a^{14} - \frac{143535}{1155466} a^{13} - \frac{15617}{577733} a^{12} - \frac{68725}{577733} a^{11} - \frac{358697}{1155466} a^{10} + \frac{216023}{577733} a^{9} + \frac{17419}{44441} a^{8} - \frac{282670}{577733} a^{7} - \frac{53150}{577733} a^{6} + \frac{253751}{1155466} a^{5} + \frac{183479}{577733} a^{4} + \frac{410937}{1155466} a^{3} + \frac{132215}{2310932} a^{2} - \frac{1051607}{2310932} a - \frac{1082277}{2310932}$, $\frac{1}{459502349931691508} a^{31} + \frac{23105260015}{114875587482922877} a^{30} - \frac{1111292257065}{459502349931691508} a^{29} + \frac{207947340134}{114875587482922877} a^{28} - \frac{703862467853}{114875587482922877} a^{27} - \frac{117156495543}{229751174965845754} a^{26} - \frac{42927993103091}{8836583652532529} a^{25} + \frac{3147413415081757}{229751174965845754} a^{24} + \frac{175977625160275}{229751174965845754} a^{23} + \frac{168219920864031}{114875587482922877} a^{22} - \frac{481231921091797}{114875587482922877} a^{21} + \frac{27200695337466463}{229751174965845754} a^{20} + \frac{11181936291486630}{114875587482922877} a^{19} - \frac{2659256307080921}{17673167305065058} a^{18} - \frac{58579352787510683}{459502349931691508} a^{17} - \frac{11492804326892879}{229751174965845754} a^{16} + \frac{46070785904281803}{459502349931691508} a^{15} - \frac{2123872751781687}{12092167103465566} a^{14} - \frac{71044558038831579}{229751174965845754} a^{13} + \frac{5814693138203683}{114875587482922877} a^{12} + \frac{2505639853705799}{17673167305065058} a^{11} - \frac{203517809502569}{6046083551732783} a^{10} + \frac{54856969399265275}{229751174965845754} a^{9} - \frac{2985812364346790}{8836583652532529} a^{8} - \frac{34420005421255755}{229751174965845754} a^{7} - \frac{102233932772235345}{229751174965845754} a^{6} - \frac{16288441611747155}{229751174965845754} a^{5} - \frac{5116460069069085}{17673167305065058} a^{4} - \frac{220772918270385917}{459502349931691508} a^{3} - \frac{2774257102949717}{8836583652532529} a^{2} - \frac{41439766729129861}{459502349931691508} a + \frac{10145069958298437}{229751174965845754}$, $\frac{1}{459502349931691508} a^{32} - \frac{23764359469}{459502349931691508} a^{30} - \frac{15135525266}{8836583652532529} a^{29} - \frac{106939617615}{229751174965845754} a^{28} - \frac{1605218042699}{229751174965845754} a^{27} + \frac{359288843370}{114875587482922877} a^{26} - \frac{1036040538561980}{114875587482922877} a^{25} - \frac{4364076496193435}{229751174965845754} a^{24} + \frac{3352969581890193}{229751174965845754} a^{23} + \frac{1311132126040017}{229751174965845754} a^{22} - \frac{169629107282369}{8836583652532529} a^{21} - \frac{50731886729387727}{229751174965845754} a^{20} + \frac{25553281014785024}{114875587482922877} a^{19} - \frac{44262898417200043}{459502349931691508} a^{18} - \frac{1193697249771950}{114875587482922877} a^{17} + \frac{22726752930241405}{459502349931691508} a^{16} - \frac{11454686829293095}{229751174965845754} a^{15} + \frac{25645439333575422}{114875587482922877} a^{14} - \frac{6834379746167617}{229751174965845754} a^{13} - \frac{24141690446674730}{114875587482922877} a^{12} - \frac{2011344273427917}{114875587482922877} a^{11} + \frac{17469369312965688}{114875587482922877} a^{10} - \frac{42006522080644317}{229751174965845754} a^{9} + \frac{58093365258248825}{229751174965845754} a^{8} - \frac{41242874014358405}{229751174965845754} a^{7} + \frac{7983114566410781}{114875587482922877} a^{6} + \frac{34848869625115920}{114875587482922877} a^{5} + \frac{54177157081791569}{459502349931691508} a^{4} + \frac{102413395232574347}{229751174965845754} a^{3} - \frac{35589419847258733}{459502349931691508} a^{2} + \frac{23782168148075253}{114875587482922877} a + \frac{45936605508749034}{114875587482922877}$, $\frac{1}{459502349931691508} a^{33} - \frac{18297050831}{114875587482922877} a^{30} + \frac{58351001975}{17673167305065058} a^{29} - \frac{658693829913}{459502349931691508} a^{28} + \frac{100503475839}{17673167305065058} a^{27} - \frac{707998243103}{229751174965845754} a^{26} + \frac{186753388451783}{17673167305065058} a^{25} - \frac{2159130434410549}{229751174965845754} a^{24} - \frac{2310724442254107}{229751174965845754} a^{23} - \frac{1512500267865529}{114875587482922877} a^{22} + \frac{667686234541668}{114875587482922877} a^{21} - \frac{1057455839530923}{8836583652532529} a^{20} - \frac{103488695567283465}{459502349931691508} a^{19} + \frac{1590895333088961}{8836583652532529} a^{18} + \frac{29700342546820991}{229751174965845754} a^{17} - \frac{44906078963075479}{229751174965845754} a^{16} - \frac{7316709780696113}{114875587482922877} a^{15} - \frac{70471225955341845}{459502349931691508} a^{14} - \frac{1918708260185752}{8836583652532529} a^{13} - \frac{47420508877578945}{229751174965845754} a^{12} + \frac{1068197436601199}{8836583652532529} a^{11} + \frac{11045006387640609}{229751174965845754} a^{10} + \frac{40125056471527363}{229751174965845754} a^{9} - \frac{45481389679474063}{229751174965845754} a^{8} - \frac{9560827519336387}{114875587482922877} a^{7} - \frac{536371961634459}{17673167305065058} a^{6} + \frac{15376415952699381}{35346334610130116} a^{5} - \frac{5692438482431513}{17673167305065058} a^{4} + \frac{20130486705499750}{114875587482922877} a^{3} - \frac{14907190834978446}{114875587482922877} a^{2} - \frac{15466056885849033}{114875587482922877} a + \frac{33974795000760547}{459502349931691508}$, $\frac{1}{459502349931691508} a^{34} + \frac{4514409845}{459502349931691508} a^{30} - \frac{204492063713}{114875587482922877} a^{29} + \frac{1562680331}{17673167305065058} a^{28} - \frac{308911468941}{114875587482922877} a^{27} - \frac{90510886477}{229751174965845754} a^{26} - \frac{790221906980721}{114875587482922877} a^{25} - \frac{1576083115547505}{229751174965845754} a^{24} + \frac{2484635217579643}{229751174965845754} a^{23} + \frac{2700659675777107}{229751174965845754} a^{22} - \frac{1293763872200173}{229751174965845754} a^{21} + \frac{79784419458856239}{459502349931691508} a^{20} - \frac{13118480586150491}{229751174965845754} a^{19} + \frac{36729832056917327}{229751174965845754} a^{18} - \frac{37252655867562143}{229751174965845754} a^{17} + \frac{97504498546131031}{459502349931691508} a^{16} - \frac{1358484038407810}{114875587482922877} a^{15} + \frac{45671138725778219}{229751174965845754} a^{14} - \frac{95860099268741653}{229751174965845754} a^{13} + \frac{20021541428530557}{229751174965845754} a^{12} - \frac{107046380783247389}{229751174965845754} a^{11} - \frac{26199770755753639}{229751174965845754} a^{10} + \frac{52155585062049559}{229751174965845754} a^{9} + \frac{27725372212495619}{114875587482922877} a^{8} + \frac{2780028514405198}{6046083551732783} a^{7} + \frac{152145393730595067}{459502349931691508} a^{6} - \frac{51577324636201177}{114875587482922877} a^{5} + \frac{24583825859839657}{229751174965845754} a^{4} - \frac{11267363501960789}{114875587482922877} a^{3} + \frac{16894092421857561}{35346334610130116} a^{2} - \frac{106263534103355287}{229751174965845754} a - \frac{28309655120558772}{114875587482922877}$, $\frac{1}{459502349931691508} a^{35} - \frac{705869272569}{229751174965845754} a^{28} + \frac{7425074152862345}{459502349931691508} a^{21} - \frac{49573374082423977}{229751174965845754} a^{14} - \frac{158073826101113367}{459502349931691508} a^{7} + \frac{25303216547920385}{229751174965845754}$
Class group and class number
$C_{18}\times C_{126}$, which has order $2268$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{54061831489131}{6046083551732783} a^{35} - \frac{486556483402179}{24184334206931132} a^{34} - \frac{1784040439141323}{24184334206931132} a^{33} - \frac{864989303826096}{6046083551732783} a^{32} - \frac{233922457508511}{465083350133291} a^{31} - \frac{20273186808424125}{24184334206931132} a^{30} - \frac{81254932728163893}{24184334206931132} a^{29} - \frac{503585960321255265}{24184334206931132} a^{28} - \frac{720914522907561885}{12092167103465566} a^{27} - \frac{144939770222360211}{930166700266582} a^{26} - \frac{5102517841438651173}{12092167103465566} a^{25} - \frac{11940228078317456977}{12092167103465566} a^{24} - \frac{16346784111031518732}{6046083551732783} a^{23} - \frac{72508106826042921117}{12092167103465566} a^{22} - \frac{56928892598494084323}{12092167103465566} a^{21} - \frac{188042349417509042073}{24184334206931132} a^{20} - \frac{163022209433350280487}{24184334206931132} a^{19} - \frac{56711888406896712489}{6046083551732783} a^{18} - \frac{47667225350402219025}{6046083551732783} a^{17} - \frac{183747569400349497171}{24184334206931132} a^{16} - \frac{20110514757473329821}{24184334206931132} a^{15} - \frac{179849819473646130333}{24184334206931132} a^{14} - \frac{21755400042361629627}{12092167103465566} a^{13} - \frac{48336305101611603183}{6046083551732783} a^{12} - \frac{17446455825351932403}{6046083551732783} a^{11} - \frac{47918490775391271702}{6046083551732783} a^{10} - \frac{11377150251393151557}{12092167103465566} a^{9} - \frac{3645659606469548985}{6046083551732783} a^{8} - \frac{1282076333764741665}{6046083551732783} a^{7} - \frac{3876719874254094879}{24184334206931132} a^{6} + \frac{827848825593063003}{24184334206931132} a^{5} - \frac{90012949429403115}{12092167103465566} a^{4} + \frac{1239982659569615589}{12092167103465566} a^{3} - \frac{8703954869750091}{24184334206931132} a^{2} + \frac{1459669450206537}{24184334206931132} a - \frac{486556483402179}{24184334206931132} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13624539961495.691 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||